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Abstract 26 

Wrist photoplethysmography (PPG) allows for continuous pulse rate monitoring in people with 27 

Parkinson disease (PD), with potential to measure autonomic dysfunction. However, motion artifacts 28 

remain a challenge, as they can affect signal quality and bias pulse rate estimates. In this study of 29 

444 people with PD, we propose a novel approach to account for motion artifacts, and explore the 30 

effect of autonomic dysfunction on pulse rate characteristics. The proportion of high-quality PPG 31 

data was unaffected by rest tremor and dyskinesia. At the individual level, filtering periodic motion 32 

artifacts significantly reduced overestimation of tremor-related maximum pulse rate. Greater 33 

autonomic dysfunction led to a lower maximum pulse rate, but did not affect resting pulse rate. In 34 

conclusion, PPG-based heart rate estimation in PD improves when periodic motion artifacts are 35 

accommodated.  Future studies are warranted to confirm the association between daily-life pulse 36 

rate measurements and autonomic dysfunction, as observed in this study. 37 

 38 

Key contributions/strengths: 39 

- Careful signal quality assessment, taking into account periodic artifacts by combining PPG & 40 

accelerometer 41 

- Careful HR estimation using smoothed-pseudo Wigner-Ville, tested on an independent dataset. 42 

- Evaluation on a unique large PPG dataset from people with PD 43 

- Correlation to the clinical gold standard for autonomic dysfunction 44 

- Pipeline open source available  45 



Introduction 46 

Non-motor symptoms are an important part of the spectrum of symptoms in Parkinson disease (PD), 47 

and play a crucial role in shaping quality of life among people with PD1. One prevalent yet often 48 

underdiagnosed non-motor manifestation of PD is dysfunction of the autonomic nervous system. 49 

This can manifest in various forms, including orthostatic hypotension, constipation and urinary 50 

dysfunction2–4. Assessing these symptoms is challenging: current methods rely solely on 51 

questionnaires and periodic hospital visits, which are influenced by the subjective interpretations of 52 

both patients and clinicians5–7. These traditional assessments could lead to misdiagnosis, resulting in 53 

a high number of unnecessary follow-ups and treatment. Therefore, there is need for more objective 54 

and continuous methods to assess autonomic symptoms in PD8–10. 55 

A potential alternative way to assess autonomic dysfunction in PD involves analyzing heart rate 56 

variation. Autonomic regulation of heart rate is affected in PD, even in prodromal stages, and signs 57 

of non-cardiac autonomic dysfunction (e.g. bladder dysfunction, constipation) are more frequent 58 

among individuals with cardiac autonomic dysfunction11–13. People with PD have lower maximum 59 

heart rates, elevated resting heart rates and impaired heart rate recovery after exercise14,15. Insights 60 

into heart rate abnormalities currently stem mainly from episodic heart rate measurements. It 61 

would be relevant to move towards continuous measurements over a longer period, thus creating a 62 

continuous "digital marker" based on heart rate patterns. Such a digital heart rate marker could 63 

offer insights into daily fluctuations and progression of autonomic dysfunction in PD. It could also 64 

help investigate the relationship between heart rate profiles and the severity of autonomic 65 

symptoms, which currently remains poorly understood. Ultimately, this could support clinical 66 

decision making, guiding treatment adjustments or optimizing medication timing and dosing. 67 

Wrist photoplethysmography (PPG) can be used to unobtrusively monitor pulse rate, which under 68 

typical conditions corresponds to heart rate16, and thereby indicate impaired heart rate regulation in 69 

daily life. Despite the growing use of PPG in wrist-worn devices, their application in ambulatory 70 



settings faces challenges due to motion artifacts17, which may be particularly relevant for people 71 

with PD, many of whom experience excessive movements caused by tremor or dyskinesia. 72 

Here, we aim to evaluate the feasibility of using wrist-worn PPG signals to assess pulse rate profiles 73 

and their relation with autonomic dysfunction in people with PD during daily life. Given the 74 

exploratory nature of this study and the variability in motor symptoms among individuals with PD, 75 

we do not predefine feasibility thresholds. Instead, we assess PPG signal quality throughout day and 76 

night, focusing on the artifact-inducing effects of motor symptoms on signal quality and pulse rate 77 

estimation. Additionally, to provide insight into the clinical relevance of daily-life PPG monitoring in 78 

this population, we examine the influence of autonomic dysfunction on pulse rate parameters.  79 



Results 80 

Study population 81 

The baseline characteristics of the study population are presented in Table 1. From the 520 82 

participants in the PPP, 34 participants had insufficient data recordings in week 0 (n=10), week 1 83 

(n=17) or both (n=7). Moreover, 22 participants had proven rhythm disorders on the screening ECG. 84 

20 participants selected using stratified sampling were used for training the signal quality algorithm. 85 

The remaining 444 participants were included in the main analyses.  86 

Participants had a mean age of 61.4 years (standard deviation, SD: 9.0), of whom 187 (42.1%) were 87 

women. Mean time since PD diagnosis was 31.4 (SD: 17.5) months. MDS-UPDRS Part III scores (in the 88 

off state) reflected mild to moderate disease severity (33.2, SD: 12.9). The synchronized sensor data 89 

(accelerometer + PPG) available for analysis comprised 22.0 hours per day per participant (SD: 1.1) in 90 

week 0 and 22.1 hours per day (SD: 1.2) in week 1. 91 

Table 1: Baseline characteristics of the study population. Data are means (SD) or numbers (%).  92 

 N = 444 

Age (years) 61.4 (9.0) 

Sex (number of women) 187 (42.1%) 

Time since diagnosis (months) 31.4 (17.5) 

SCOPA-AUT score, range 0-69 14.5 (7.2) 

MDS-UPDRS Part III OFF score, range 0-132 33.2 (12.9) 

Use of beta blockers 40 (9.0%)  

PASE score, range 0-400 173.2 (81.2) 

Resting pulse rate – day (min-1) 66.5 (9.2) 

Resting pulse rate – night (min-1) 61.4 (8.0) 

Maximum pulse rate (min-1) 87.1 (13.0) 



Daily sensor data availability week 0 22.0 (1.1) 

Daily sensor data availability week 1 22.1 (1.2) 

  93 



Signal quality - descriptives 94 

Signal quality was defined using a two-step algorithm combining PPG signal morphology and 95 

detection of periodic motion artifacts. This approach is visually summarized in Figure 1, providing a 96 

clear overview of the criteria used to identify high-quality segments.  97 

 98 

Figure 1: An overview of the signal processing pipeline for PPG signal quality and pulse rate 99 

estimation. The pipeline consists of a PPG signal quality filter and a pulse rate estimation method: 100 

1) signal quality filter, combining PPG morphology classification (step 1) and periodic motion 101 

artifact detection (step 2) using accelerometer data to obtain per-second quality labels; and 2) 102 

pulse rate estimation from high-quality PPG segments using the smoothed pseudo Wigner-Ville 103 

distribution. Pulse rate is estimated for every 2s and summarized weekly. LR = logistic regression, 104 

PPG = photoplethysmography; PSD =  power spectral density.  105 

In Figure 2, the median (IQR) proportion of high quality PPG signals is shown across every hour of the 106 

circadian cycle. During daytime hours, the median proportion was 29.2% [24.0%, 35.9%]; while 107 

during nighttime hours, it was 86.1% [79.3%, 90.6%]. We observed a similar pattern in the second 108 

study week (Supplementary Figure 5, Supplementary Table 3). Removing periodic artifacts resulted 109 

in an overall reduction of 0.10% of the median proportion of high-quality PPG signals during the day 110 

(Supplementary Figure 6, Supplementary Table 3).  111 



 112 

Figure 2: Proportion of high-quality PPG data across the circadian cycle in the first study week. 113 

Data are represented as medians + IQR. 114 

Impact of tremor and dyskinesia on signal quality 115 

No significant differences in day-time data quality were found among the no tremor, mild tremor, 116 

and severe tremor groups [F(2,441)=0.19, p=0.83; Figure 3]. Similarly, no significant differences in 117 

day-time data quality were found among the no dyskinesia, mild dyskinesia and severe dyskinesia 118 

groups [F(2,441)=1.07, p=0.34; Figure 4]. All comparisons between study groups based on tremor 119 

and dyskinesia can be found in Supplementary Tables 3 and 4.   120 

 



 121 

Figure 3: The proportion of high-quality PPG data in relation to tremor severity (MDS-UPDRS 3.17) 122 

in the first study week.  The different colors represent the data quality when assessing solely PPG 123 

morphology (blue) or also incorporating periodic artifact removal using the accelerometer (red). 124 

 125 

Figure 4: The proportion of high-quality PPG data in relation to dyskinesia severity (MDS-UPDRS 126 

4.1 + 4.2) in the first study week.  The different colors represent the data quality when assessing 127 

solely PPG morphology (blue) or also incorporating periodic artifact removal using the 128 

accelerometer (red). 129 



Impact of periodic artifact removal on pulse rate estimates 130 

Next, we assessed the effect of periodic artifact removal on two-second pulse rate estimates in the 131 

physiological range (40-180 beats per minute). Pulse rate was estimated every two seconds using 132 

smoothed pseudo Wigner-Ville distribution (SPWVD) time-frequency analysis, applied to 30-second 133 

segments of high-quality PPG signals.  134 

Figure 5 illustrates the mean absolute removal of pulse rate estimates per subject across the 135 

different tremor groups in the first study week. Individuals with higher tremor scores demonstrated 136 

numerically more detection and removal of  high-frequency periodic motion artifacts, particularly in 137 

the >160 bpm range.  No difference is seen between the different dyskinesia groups (Supplementary 138 

Figure 7). Furthermore, in all study groups, low-frequency (40-120 bpm) periodic motion artifacts 139 

were removed, with the highest proportion in the 40-80 bpm range.  140 

 141 



Figure 5: Removed pulse rate estimates by applying step 2 of the signal quality algorithm, for the 142 

different tremor groups. The data are represented as the mean absolute removal per subject per 143 

pulse rate value. People with a higher tremor score show more exclusion of higher pulse rate 144 

estimates. 145 

Figure 6 shows a representative example of a data fragment from a severe tremor subject where 146 

periodic movement artifacts influenced the PPG signal. By applying the periodic motion artifact filter 147 

in step 2 of the signal quality algorithm, this segment is excluded from further pulse rate analysis.  148 

 149 

Figure 6: Data fragment of periodic artifact leaking into PPG in a severe tremor subject. In the 150 

upper two panels, the PPG signal shows substantial alignment with acceleration, indicating that a 151 

potential motion artifact is present in the PPG signal. Without artifact removal, the extracted 152 

pulse rate of the PPG signal is approximately 180 beats per minute (third panel). However, the 153 

relative power in the accelerometer at the dominant PPG frequency (fourth panel) exceeds the 154 

motion artifact threshold of 0.10, leading to the exclusion of this estimate from further analysis. 155 



Next, we assessed the impact of periodic artifact removal on the weekly aggregated pulse rate 156 

parameters. After filtering, the mean resting pulse rate was 61.4 min-1 (SD: 8.0) at night and 66.5 157 

min-1 (SD: 9.2) during the day. The mean maximum pulse rate was 87.1 min-1 (SD: 13.0). Full 158 

distributions of all pulse rate parameters are shown in Supplementary Figure 8. The effect of 159 

periodic motion artifact removal (Step 2) on the aggregated maximum pulse rate across the three 160 

tremor groups is illustrated in Figure 7. There were significant differences in maximum pulse rate 161 

between the two configurations across all tremor groups. In participants without tremor, the mean 162 

maximum pulse rate decreased from 87.2 bpm to 85.2 bpm after periodic motion artifact removal, a 163 

decrease of 2.0 bpm (SD 8.2; p < 0.001). In those with mild tremor, the mean maximum pulse rates 164 

dropped from 91.3 bpm to 87.5 bpm after,  a difference of 3.8 bpm (SD 11.3; p = 0.001). Participants 165 

with severe tremor showed a decrease from 97.6 bpm before and 92.7 bpm, representing a 166 

difference of 4.9 bpm (SD 14.7; p = 0.02). On an individual level, several maximum pulse rates in all 167 

groups were affected by more than 30 BPM. We saw a similar pattern for the three different 168 

dyskinesia groups (Supplementary Figure 10). 169 

In contrast to the maximum pulse rate, individual resting pulse rate parameters were not affected by 170 

removal of periodic motion artifacts across tremor and dyskinesia groups (Supplementary Figure 11-171 

14). 172 



173 

Figure 7: The maximum pulse rate in relation to tremor severity (MDS-UPDRS 3.17) in the first 174 

study week.  The different colors represent the maximum pulse rate when assessing solely PPG 175 

morphology (blue) or also incorporating periodic artifact removal using the accelerometer (red). 176 

While filtering for periodic motion artifacts significantly affects the aggregated maximum pulse 177 

rate at the group level, its effect was particularly substantial at a individual level – especially in the 178 

severe tremor group. 179 

Effect of autonomic dysfunction on pulse rate parameters 180 

More severe autonomic dysfunction led to a lower maximum pulse rate during the day in the first 181 

study week (β:-0.17, 95% CI: [-0.33, -0.00]; Figure 8), and in the second study week (β:-0.26, 95% CI: 182 

[-0.41, -0.04]; Supplementary Figure 15). In contrast, we found no effect of autonomic dysfunction 183 

on resting pulse rate, during either the night (β:0.02, 95% CI: [-0.08, 0.13]) or the day (β:-0.02, 95% 184 

CI: [-0.13, 0.10]) in the first study week (Figure 8). Similar results were obtained in the second study 185 

week (Supplementary Figure 15). 186 



187 

Figure 8. Multivariate regressions between the pulse rate parameters in the first study week and 188 

SCOPA-AUT. Every data point is corrected using the following covariates: age, sex, use of 189 

betablockers and baseline physical activity. SCOPA-AUT = SCales for Outcomes in PArkinson’s 190 

disease - Autonomic dysfunction. 191 

Discussion 192 

This study explored the feasibility of wrist-worn PPG for measuring pulse rate parameters in people 193 

with PD during daily life and to assess the effect of autonomic dysfunction on these parameters. 194 

First, we addressed the problem of PPG motion artifacts in the PD population. Our findings indicate 195 

that the severity of tremor and dyskinesia does not affect the overall availability of high-quality PPG 196 

data. However, periodic motion artifacts, such as those caused by tremors, can impact pulse rate 197 

estimates. Segments with such periodic artifacts can be filtered out by combining PPG and 198 

accelerometer signals, reducing overestimation of the maximum pulse rate at the individual level 199 

with minimal data removal. Second, we studied the effect of autonomic dysfunction on pulse rate 200 

parameters. We found a weak effect of severity of autonomic dysfunction on weekly maximum pulse 201 

rate, but no effect on weekly resting pulse rate. This indicates that features related to autonomic 202 

dysfunction can be captured using PPG in people with PD, but further research is needed to identify 203 

more specific pulse rate (variability) markers to monitor autonomic dysfunction.  204 

Compared with existing literature, our study provides novel insights into the impact of periodic 205 

motion artifacts on the quality of PPG signals in people with PD. The impact of these artifacts on 206 



daily life assessments had not been studied before. We demonstrate that filtering out such artifacts 207 

(e.g., tremor) minimally reduces the proportion of high-quality PPG data, but it can improve pulse 208 

rate estimation in segments affected by periodic motion artifacts. The extraction of pulse rates from 209 

PPG signals can be approached using traditional signal analysis methods18–20 or more advanced 210 

techniques, such as deep learning combined with sensor fusion (accelerometer and PPG)21. 211 

Traditional methods, as employed in this study, typically focus on identifying and extracting high-212 

quality PPG signals prior to pulse rate estimation22. However, most studies focus solely on PPG signal 213 

characteristics, whereas our study also integrates accelerometer data to explicitly account for 214 

periodic motion artifacts. This approach is particularly important in the context of PD, as our results 215 

suggest that tremor-related motion can mimic physiological patterns in the PPG signal. This insight 216 

may extend to broader contexts, such as lower-frequency periodic movements during e.g. gait 217 

(around 1 Hz)23. This is supported by our data, showing that most removed periodic artifacts, 218 

regardless of tremor group, were concentrated in the 40-80 bpm range (0.7-1.3 Hz). Although 219 

sophisticated approaches like statistical models and machine learning, including deep learning 220 

incorporating frequency characteristics of both PPG and accelerometer, have been explored 221 

primarily in sports research, they have not yet been specifically developed for diseased 222 

populations21,24,25. We posit that such approaches are suited to also address PD-specific challenges. 223 

Future research should explore these methods, as they may enhance pulse rate estimation reliability 224 

during lower-quality PPG segments encountered in daily activities. 225 

Previous lab-based studies demonstrated that people with PD have a lower maximum heart rate 226 

during exercise compared to controls due to autonomic dysfunction. We extended this by examining 227 

the effect of severity of autonomic dysfunction on maximum pulse rate in daily life. We found that 228 

more severe autonomic dysfunction leads to a lower maximum pulse rate. This supports the notion 229 

that, in addition to parasympathetic dysfunction, impaired sympathetic dysfunction is a 230 

pathophysiological feature of autonomic involvement in PD3,26. Based on pathophysiological 231 

reasoning, we expected to observe an effect of autonomic dysfunction on resting pulse rate27. 232 



However, our findings did not support this hypothesis, aligning instead with mixed empirical 233 

evidence, with some studies reporting no difference in daytime resting heart rate between PD and 234 

controls28. Similarly, findings on how PD affects nighttime resting heart rate are also inconsistent29,30, 235 

even though this is considered to be a more stable metric for autonomic function (because of lower 236 

measurement variability due to fewer external influences31,32). 237 

We are the first to study these relationships using real-life PPG data, rather than during controlled 238 

settings. We observed only a weak effect of autonomic dysfunction, as assessed through a patient-239 

reported outcome (SCOPA-AUT) , on maximum pulse rate. Multiple factors could explain this weak 240 

effect. First, maximum pulse rate is highly influenced by physical activity, which not only elevates the 241 

heart rate but also introduces motion artifacts that can lower PPG signal quality33,34.  Although we 242 

adjusted for physical activity using the Physical Activity Scale for the Elderly (PASE), maximum pulse 243 

rate remains highly dependent on the amount and level of physical activity and the ability to capture 244 

high-quality PPG data during these activities. This is reflected in our findings, where the observed 245 

maximum pulse rates were relatively low compared to participants’ age-predicted maximum heart 246 

rates. Second, it is possible that the patient-reported outcome to assess autonomic dysfunction does 247 

not reliably capture all the physiological aspects of autonomic function. A more robust and objective 248 

alternative would be to use quantitative measures such as cardiac innervation imaging (123I-mIBG 249 

scintigraphy 35). Given these limitations, future research should consider not only global pulse rate 250 

parameters but also zoom in on heart rate responses in more specific behavioral contexts, such as 251 

sleep or daily activities (e.g. during walking or other intense physical activities). Nocturnal analyses 252 

offer a promising avenue for research because reduced levels of movement during sleep will likely 253 

improve the PPG data quality.  This would also allow for pulse rate variability measurements, which 254 

could yield more accurate assessments of autonomic function36–38. The merits of this approach 255 

remain to be formally demonstrated, as persons with PD can manifest a wide range of nocturnal 256 

movements, including dream enactment behavior and periodic leg movements during sleep39. 257 



A key strength of this study was the use of a large dataset collected from a representative 258 

population of people with early-stage PD through continuous real-world monitoring. Participants 259 

wore the smartwatch on average 22 hours per day, indicating strong adherence and consistent 260 

device use in daily life. This extensive dataset provides a comprehensive insight into pulse rate 261 

patterns in daily life of people with PD, including both daytime and nighttime recordings. Moreover, 262 

this study establishes a first link between free-living pulse rate data and autonomic dysfunction, 263 

offering new insights into autonomic regulation in PD. Another notable strength was the approach to 264 

data annotation and validation of pulse rate estimations. The careful annotations ensured the 265 

accuracy and reliability of the PPG signal quality, while the validation of the pulse rate estimation 266 

(using the smoothed pseudo Wigner-Ville distribution with alternative methods using an external 267 

dataset) reinforces the robustness of the methodology. Importantly, signal quality assessment 268 

explicitly accounted for periodic motion artifacts, such as tremors, by combining PPG and 269 

accelerometer signals. This multimodal approach allowed us to filter out segments with periodic 270 

disturbances, thereby improving the reliability of the pulse rate parameters. This supports the 271 

potential of PPG as a tool for monitoring pulse rate and autonomic function in people with PD. The 272 

Personalized Parkinson Project offers a unique opportunity to further study this concept, as we have 273 

digital data available for all participants for minimally up to 2 years (and up to 3 years for a sizeable 274 

subgroup)8,40. 275 

This study was not without limitations. One key drawback was the reliance on a self-administered 276 

questionnaire (SCOPA-AUT) to assess autonomic dysfunction. While this questionnaire is considered 277 

a gold-standard assessment for one’s autonomic dysfunction, it remains inherently subjective and 278 

prone to high within-subject variability41. This could explain why we found no effect of autonomic 279 

dysfunction on resting pulse rate and only a weak effect on maximum pulse rate. Future studies 280 

should consider incorporating objective, quantitative measures of autonomic function, such as 281 

orthostatic blood pressure testing, sweat tests, and cardiac innervation imaging using 123I-mIBG 282 

scintigraphy. In addition, the estimation of the effect of autonomic dysfunction on pulse rate 283 



parameters from observational data should be interpreted with caution, given its underlying 284 

assumptions. Potential residual confounding and imperfect measurement of key variables may have 285 

influenced the results. To increase transparency about these assumptions, we included a DAG, which 286 

may be further refined in future research. Another limitation is the lack of validation for the impact 287 

of filtering using ECG data. Also, we did not explicitly assess whether segments with a high 288 

correlation between the spectral content of the accelerometer and PPG indeed resulted in 289 

erroneous pulse rate estimates when compared to ECG. Such an analysis would have helped to 290 

confirm that the high pulse rate estimates removed by filtering indeed reflected periodic motion 291 

artifacts, rather than physiological changes. However, our feature for periodic motion artifact 292 

detection was designed to identify segments with high accelerometer-PPG correlation. Therefore, 293 

we expect that filtering mainly removes implausible pulse rate estimates, while discarding only a 294 

minimal amount of real pulse rate data. Future research should confirm this by directly comparing 295 

filtered PPG data with ECG recordings. Finally, the potential impact of tremor on pulse rate 296 

estimation was only assessed at the group level using clinically based tremor assessments. Future 297 

work could benefit from integrating tremor and gait detection algorithms, particularly given the 298 

presence of low-frequency artifacts suggestive of possible gait-related motion. Such approaches 299 

would allow for per-segment analysis of periodic motion artifacts, providing a more precise 300 

evaluation of their effects on pulse rate measurements. 301 

Identifying a reliable digital marker for autonomic dysfunction in PD remains a complex challenge, 302 

but this study represents an important first step. The current pipeline provides a novel method for 303 

estimating pulse rate in the PD population, supporting the development of PPG-based digital 304 

markers of autonomic function. However, further refinements – such as improving performance 305 

during motion – could increase the accuracy and robustness of these pulse rate markers in real-306 

world, longitudinal applications. In parallel, future research should prioritize identifying more 307 

specific digital markers for autonomic dysfunction, such as pulse rate variability. This will be crucial 308 

for developing a more comprehensive set of markers for tracking autonomic dysfunction. 309 



Longitudinal evaluations in clinical trials could provide valuable insights into the progression of 310 

autonomic dysfunction, with trends over time likely offering more actionable information than cross-311 

sectional comparisons between subjects, particularly for pulse rate variability parameters during 312 

nighttime. As we continue to explore and validate these approaches, the development of more 313 

specific parameters will be crucial for tracking disease progression. 314 

315 



Methods 316 

Study design 317 

The primary objectives are to 1) study signal quality of wearable PPG signals in daily life, especially in 318 

the presence of tremor and dyskinesia, and 2) assess the impact of periodic artifact removal on pulse 319 

rate estimates. As a secondary objective, we investigate the effect of autonomic dysfunction, as 320 

assessed by the SCOPA-AUT questionnaire, on pulse rate parameters (resting pulse rate and 321 

maximum pulse rate).  322 

As this is an exploratory study, no predefined thresholds for feasibility were set. However, feasibility 323 

is evaluated based on two aspects: (1) technical reliability, defined by the proportion of high-quality 324 

data despite the presence of motor symptoms, and (2) clinical meaningfulness, reflected by plausible 325 

effects of autonomic dysfunction on pulse rate parameters. Together these analyses aim to assess 326 

whether continuous wrist-worn PPG monitoring in PD is both technically viable and potentially 327 

informative in a clinical context.  328 

Study cohort 329 

Data were obtained from the Personalized Parkinson Project (PPP), a single-center cohort study 330 

(NCT03364894) including 520 people with early PD (i.e. time since diagnosis ≤5 years)8. In brief, 331 

participants were monitored in daily life using a wrist-worn sensor device for a minimum of two 332 

years (and up to three years in a large subgroup). Participants were also assessed during yearly in-333 

clinic study visits, which included a detailed clinical assessment, MRI, and collection of biosamples.   334 

In the current study, we included participants who completed the baseline clinical assessment and 335 

the first two weeks of wearable sensor data collection. The exclusion criteria were insufficient sensor 336 

data collection (weekly average wearable wear time < 12 hours per day) and presence of atrial 337 

rhythm disorders (as confirmed by screening for cardiac anomalies using electrocardiogram (ECG) 338 

recordings (12-lead Holter) or based on medical records). The latter is particularly relevant to ensure 339 



that heart rate patterns reflect autonomic function rather than underlying heart rhythm 340 

abnormalities.  341 

Demographics and clinical data 342 

Data on patient demographics, medical history, medication use and symptom severity were 343 

obtained from the baseline study visit. To quantify the severity of autonomic dysfunction, we used 344 

the total score on the SCales for Outcomes in PArkinson’s disease - Autonomic Dysfunction (SCOPA-345 

AUT) questionnaire42. The severity of tremor and dyskinesia was obtained from the Movement 346 

Disorders Society-Unified Parkinson Disease Rating Scale (MDS-UPDRS) part III and IV assessments, 347 

which was conducted by trained assessors43.  348 

Wearable sensor data 349 

Continuous monitoring of the participants was facilitated using a wearable sensor device (Verily 350 

Study Watch, Verily Life Sciences, CA, USA). This watch enables data collection by several sensors, 351 

including PPG and accelerometer. During the baseline study visit, participants were instructed on the 352 

correct watch placement on the arm, charging, and maintenance. PPG data were obtained at a 353 

sampling rate of 30 Hz and accelerometer data at a sampling rate of 100 Hz. In this study, we used 354 

the PPG and accelerometer data obtained during the first two weeks of follow-up. 355 

Wearable sensor data preprocessing 356 

The raw sensor data were stored in the TSDF data format to allow for efficient processing44. Minor 357 

variations in the sampling frequency were resolved by resampling the PPG data through cubic spline 358 

interpolation to exactly 30 Hz (PPG) and 100 Hz (accelerometer). Two fourth-order high-pass 359 

Butterworth filters with the cut-off frequencies of 0.4 Hz (PPG) and 0.2 Hz (accelerometer) were 360 

applied to eliminate offset and trend components in the signal. 361 

Signal quality assessment 362 

We employ an approach to filter out PPG segments with significant motion artifacts which could 363 

impede reliable pulse rate estimation using the combined outputs of the following steps:  364 



1. Assessment of PPG morphology 365 

2. Periodic motion artifact removal 366 

In the first step, segments are filtered out based on the typical PPG morphology. In the second step, 367 

remaining segments with periodic motion artifacts (e.g. introduced by tremor) which mimic pulse 368 

waves were filtered out by combining the PPG and accelerometer data. The schematic 369 

representation of this approach is depicted in Figure 1.  370 

Step 1: Assessment of PPG morphology 371 

We assessed PPG morphology based on the typical sinusoidal pulse waves with discernible peaks 372 

from which pulse rate can be determined18,19,22. To detect typical PPG morphology, we employed a 373 

machine learning modelling approach – a logistic regression (LR) classifier. The LR classifier was 374 

trained using an annotated dataset consisting of PPG data from 20 PPP subjects (training set, not 375 

used in the other evaluations), selected through stratified sampling based on age, sex, and rest 376 

tremor scores. The PPG signals were annotated by visual inspection by two experienced 377 

investigators (KV, JT) following a standardized annotation protocol, which included a detailed 378 

definition for the PPG morphology of low- versus high-quality segments (Supplementary Methods 379 

1.1.1.2). First, the two investigators independently annotated the same segments and discussed any 380 

disagreements to refine the annotation protocol. After sufficient agreement was reached (kappa of 381 

0.8), the remaining segments were annotated by a single investigator. A detailed description of the 382 

annotation process can be found in Supplementary Methods 1.1.1. 383 

The LR model to classify PPG morphology was trained using window-based time and frequency 384 

features. L1 regularization was applied for feature selection to enhance classifier efficiency. The 385 

performance was evaluated using leave-one-subject-out cross-validation. Compared to the visual 386 

annotations, the classifier’s accuracy was 98.4% (SD: 0.95%), with a sensitivity of 98.2% (SD: 1.32%) 387 

and a specificity of 98.5% (SD: 1.32%). 388 



A detailed description of the training process, including feature selection and the specific features 389 

used in the LR classifier, can be found in Supplementary Methods 1.1.2-1.1.4.  390 

 391 

Step 2: Periodic motion artifact removal 392 

Due to the sensitivity of PPG to motion artifacts, we hypothesized that periodic movements such as 393 

tremor can cause periodic artifacts very similar to the typical pulse wave in the PPG signal. During 394 

the annotation process, we indeed found several examples of oscillations in the PPG signal that were 395 

accompanied by oscillations of the same frequency in the accelerometer signal (see Figure 9 for one 396 

example). These examples occurred in the low rest tremor range (around 2.5 to 3 Hz), which is still 397 

within the physiological pulse rate range. 398 

To filter out PPG segments with such periodic artifacts, we combined the PPG and accelerometer 399 

signals. We considered a segment to be a periodic artifact if the dominant frequency of the PPG 400 

matched the dominant frequency of the accelerometer. To identify these artifacts, we calculated the 401 

window-based relative power in the accelerometer at the dominant PPG frequency (±0.05 Hz) and 402 

its first harmonic (±0.05 Hz). If the relative power exceeded a threshold of 0.10 the window was 403 

classified as an artifact. The threshold was selected based on the training dataset. Supplementary 404 

Methods 1.2 provide more details on the calculation of the relative power and the threshold 405 

selection.  406 



 407 

 408 

Composite signal quality classification 409 

Both steps were applied to 6s windows with a 5s overlap, after which the final signal quality 410 

classification was made for every 1s. A window was classified as high-quality, only if both steps 411 

classified it as such. To produce the final quality prediction for every 1s, majority voting was applied 412 

to the overlapping windows. More details can be found in Supplementary Methods 1.3.  413 

Impact of tremor and dyskinesia on signal quality 414 

To investigate the impact of tremor and dyskinesia on PPG signal quality, participants were stratified 415 

into sub-groups based on their rest tremor scores on the device-sided arm (item 3.17) and combined 416 

dyskinesia scores (items 4.1 and 4.2) from the MDS-UPDRS at the baseline visit. Rest tremor scores 417 

were categorized into three groups: no tremor (score of 0), mild tremor (score of 1), and severe 418 

tremor (score of 2 or higher). Similarly, dyskinesia scores, derived from both the duration and 419 

Figure 9: Possible leakage of periodic movements into the PPG signal. Upper panel: PPG 

signal, middle panel: three axes of the accelerometer, lower panel: power spectral 

density of PPG and the sum of the three accelerometer axes. The dominant frequency in 

both signals is +/- 3 Hz, which falls within both the physiological pulse rate range and 

the rest tremor frequency range. 

 



functional impact of dyskinesias, were divided into three groups: no dyskinesia (combined score of 420 

0), mild dyskinesia (combined score of 1), and severe dyskinesia (combined score of 2 or higher). 421 

Signal quality estimates were analyzed for either daytime hours (08:00 – 21:59) or nighttime hours 422 

(00:00 – 05:59). 423 

Pulse rate estimation 424 

Following evaluation of the PPG signal quality, we proceeded with pulse rate estimation, as depicted 425 

in Figure 1. For this, 30 consecutive high-quality 1s windows were used, as determined by the signal 426 

quality algorithm. To identify the most suitable method for pulse rate estimation from PPG, we 427 

compared various approaches using the PPG DaLiA dataset45
, with ECG as reference. The highest 428 

accuracy was obtained using smoothed-pseudo Wigner-Ville Distribution (SPWVD) time-frequency 429 

analysis, hence we used the SPWVD for all subsequent pulse rate estimates. See Supplementary 430 

Methods 1.4.1-1.4.6 for the results of the comparison. 431 

Using the SPWVD method, we estimated the pulse rate for every 2s. An example of this approach is 432 

provided in Supplementary Methods 1.4.7. Pulse rate estimates were divided into either daytime 433 

(08:00 – 21:59) or nighttime (00:00 – 05:59) and aggregated per week into three parameters: resting 434 

pulse rate (day and night) and maximum pulse rate during the day. The resting pulse rate was 435 

defined as the most frequently occurring pulse rate value across high-quality windows within the 436 

respective time windows. To ensure a meaningful mode calculation, pulse rate estimates were 437 

assigned to frequency bins of 1 beat per minute, based on the approximate frequency resolution 438 

from the 30-second SPWVD window. Maximum pulse rate during the day was defined as the 99% 439 

percentile of all pulse rate estimates.  440 

Impact of periodic artifact removal on pulse rate estimates 441 

To evaluate the impact of periodic motion artifacts on pulse rate estimations, we compared the 442 

results of two configurations of the processing pipeline: (1) using only PPG morphology for high-443 

quality segment selection (step 1), and (2) using the combined PPG and accelerometer approach to 444 



also account for periodic artifacts (steps 1 and 2). The two seconds pulse rate estimates and weekly 445 

pulse rate aggregates derived from both configurations were analyzed across the previously defined 446 

study groups for rest tremor and dyskinesia severity.  447 

Effect of autonomic dysfunction on pulse rate parameters  448 

We used a linear regression model to investigate the effect of autonomic symptom severity, as 449 

assessed by the continuous sum score of the SCOPA-AUT questionnaire, on the weekly pulse rate 450 

parameters. The pulse rate parameters served as dependent variables in the regression analyses. To 451 

reduce bias and strengthen the interpretation of this effect estimate in an observational setting46, 452 

we constructed a direct acyclic graphs (DAG) to identify potential confounding factors known to 453 

influence both pulse rate parameters and autonomic dysfunction (see Supplementary Methods 1.5). 454 

Based on this DAG, we adjusted the regression models for age, sex, baseline physical activity 455 

(assessed by the Physical Activity Scale for the Elderly; PASE), and medication (specifically 456 

betablockers). Statistical significance for comparisons between study groups (e.g. tremor and 457 

dyskinesia severity) was assessed using one-way ANOVA or Kruskal-Wallis tests, whichever was 458 

appropriate. For within-subject comparisons (e.g., pulse rate parameters before and after periodic 459 

artifact removal), paired t-tests or Wilcoxon signed-rank tests were applied, whichever was 460 

appropriate. A significance threshold of p < 0.05 was used. The linear regression models were 461 

implemented using the LM function in R (RStudio, version 4.3.2).  462 

 463 

Data availability 464 

Data from the Personalized Parkinson Project used in the present study were retrieved from the PEP 465 

database (https://pep.cs.ru.nl/index.html). The PPP data is available upon request via: ppp-466 

data@radboudumc.nl. More details on the procedure can be found on the website 467 

www.personalizedparkinsonproject.com/home. 468 

https://pep.cs.ru.nl/index.html
mailto:ppp-data@radboudumc.nl
mailto:ppp-data@radboudumc.nl
http://www.personalizedparkinsonproject.com/home


Code availability 469 

Code for the running the individual PPG signal processing pipeline (preprocessing, signal quality 470 

assessment and pulse rate estimation) is available in the ParaDigMa toolbox: 471 

https://doi.org/10.5281/zenodo.15223364. The code to generate the aggregated results in this study 472 

is publicly available in the Git repository: 473 

https://github.com/biomarkersParkinson/PPP_PPG_feasibility.git.   474 

https://doi.org/10.5281/zenodo.15223364
https://github.com/biomarkersParkinson/PPP_PPG_feasibility.git
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1 Supplementary methods 

1.1 Development of PPG morphology classifier 

The goal of the classifier was to distinguish high quality PPG data from poor quality, based on short 

(6s) PPG segments derived from manually annotated 1-minute epochs. The classifier was trained on 

handcrafted features extracted from these segments and evaluated using a nested cross-validation 

procedure to ensure generalizability. 

1.1.1 Annotation pipeline 

The annotation pipeline relied on visual inspection by experts, supported by consistent signal 

visualization. First, PPG recordings were divided into 1-minute epochs. Then, filtered signals were 

visualized alongside their spectrograms using a custom graphical user interface (GUI). Annotations 

were performed independently by two trained investigators.  

1.1.1.1 Annotation data set 

A representative sample of 20 PPP subjects was selected from the data set to create the annotation 

set. Stratification was performed based on the following characteristics: sex, age and resting tremor 

scores (UPDRS III: Motor examination in OFF state). From each subject, 1-minute PPG epochs were 

selected from two timepoints: week 1 and week 52. For each week, annotation was performed on 

the first full 24h of the PPG recording (1440 epochs). This approach ensured that the total 

annotation set (57600 epochs) included variability in both temporal aspects and individual signal 

characteristics. 

1.1.1.2 Data quality labeling 

All PPG recordings were divided into non-overlapping 1-minute epochs, which allowed for sufficient 

context for reliable visual interpretation of PPG morphology while remaining also practical for large-

scale annotations. We determined high quality PPG data as the typical waveform as described in 

literature1–3. Each epoch was assigned to one of the initial four quality categories, defined by the 

proportion of the signal displaying the typical morphology: 



- Label 1 – Very high quality: ≥95% of the epoch 

- Label 2 – Moderate quality: 50-95% 

- Label 3 – Low quality: 10-50% 

- Label 4 – Very poor quality: <10%  

1.1.1.3 Annotation protocol 

Annotations were performed using a custom GUI in MATLAB. Each 1-minute epoch was shown with: 

- Time-domain PPG signal (filtered, fixed amplitude scale) 

- Spectrogram (computed using pspectrum, 3s time resolution, 50% overlap) 

- Timestamp (absolute time in the recording) 

Spectrograms were min-max normalized to a range between 0 and 1 for better comparability of the 

dominant frequencies. Investigators underwent a training phase using three independent 24h 

datasets and proceeded to annotate after reaching inter-rater agreement (Cohen’s kappa > 0.8).  

1.1.2 Feature extraction 
For the development of the classifier in this research, we only used the epochs annotated as label 1 

(very high quality) or label 4 (very poor quality). These epochs were subdivided into 6s non-

overlapping  segments. From each 6s PPG segment, a set of 10 time- and frequency-domain features 

was constructed. The following 10 features were calculated: 

- Standard deviation 

- Mean amplitude of the absolute PPG signal 

- Median amplitude of the absolute PPG signal  

- Skewness 

- Kurtosis  

- Dominant frequency: calculated using Welch’s method with a 3s Hann window and 50% 

overlap. 



- Relative power: power within ± 0.2 Hz around the dominant frequency, normalized to the 

total power 

- Spectral entropy: computed as the Shannon entropy of the normalized power spectral 

density 

- Signal-to-noise ratio: ratio of the variance of the absolute signal (signal variance) to the 

variance of the signal (noise variance), as described by Elgendi et al.2 

- Autocorrelation peak: highest non-zero-lag peak of the autocorrelation function 

 

1.1.3 Training of the classifier 

1.1.3.1 Classifier 

A Logistic Regression (LR) classifier was selected due to its interpretability and effectiveness for 

binary classification. 

1.1.3.2 Hyperparameter optimization 

For hyperparameter optimization, a grid search approach was used to identify the best configuration 

of hyperparameters for the LR classifier. The following hyperparameters were tuned: 

- Regularization strength (λ): varied over a logarithmic range, including 0 and log-spaced 

values from 10-6 and 100. The regularization method was fixed to lasso (L1 regularization) 

- Solver: the optimization process explored two solvers: 

o Stochastic Gradient Descent (SGD) 

o Sparse Reconstruction by Separable Approximation (SpaRSA) 

1.1.3.3 Leave-One-Out Cross-Validation (LOOCV) 

In the LOOCV, the dataset split such that one subject is held out for testing, and the remaining 

subjects are used for training. In the inner loop, hyperparameters are optimized through grid search 

based on the highest average performance across the training set. In the outer loop, the model is 

evaluated on the held-out subject using the optimal hyperparameters. The performance is averaged 



across all iterations. Finally, hyperparameters are selected based on the average performance of the 

held-out validation data, and the model is retrained on the full dataset using the optimal 

configuration.  

1.1.4 Results 

The LR classifier achieved high performance in distinguish high-quality from poor quality segments. 

Supplementary Table 2 shows the classification metrics averaged over all LOOCV iterations.  

Supplementary Table 1: Performance metrics of the logistic regression classifier evaluated using 

nested leave-one-out cross-validation (LOOCV) on 6s PPG segments. Metrics are averaged across 

all LOOCV iterations. 

Metric Mean (± SD) 

Accuracy 98.4 (1.0) 

Sensitivity 98.2 (1.4) 

Specificity 98.5 (1.3) 

F1-score 98.1 (1.1) 

Precision 97.9 (1.7) 

 

The best performance of the final LR classifier was achieved using a LR classifier with a regularization 

parameters of 0.0001 using Lasso regularization and the SpaRSA solver. 

Supplementary Table 2: Final hyperparameter configuration for the logistic regression classifier 

after nested leave-one-out cross-validation. 

Hyperparameter Mean (± SD) 

Regularization strength (λ) 0.0001 

Regularization type Lasso (L1) 

Solver SpaRSA 

 

 

 

1.2 Periodic motion artifact removal 

1.2.1 Calculation of Relative Power 

To identify periodic artifacts in the PPG signal caused by periodic motion artifacts, we employed a 

method to calculate the window-based relative power in the accelerometer signal. This process 

involved the following steps (also illustrated in Supplementary Figure 1): 



1. Frequency Analysis: We performed the Welch’s method on both the PPG and accelerometer 

signals to obtain the frequency distribution. We defined the dominant frequency as the 

frequency at which the signal has the highest power. 

2. Frequency Band Selection: For each window, we focused on the dominant PPG frequency 

(±0.05 Hz) and its first harmonic (±0.05 Hz). The first harmonic is determined as twice the 

dominant frequency and is included to capture higher-order periodic components. 

3. Power Calculation: Using the PSD estimates from the Welch’s method, we calculated the 

power within these frequency bands for the accelerometer signal. The power within a 

frequency band is the integral of the PSD over that band, which we computed using the 

trapezoidal rule.  

4. Relative Power: The relative power is defined as the ratio of the power within the specified 

frequency band to the total power in the accelerometer signal. This ratio quantifies the 

proportion of the signal's energy that is concentrated at the dominant PPG frequency and its 

harmonic. 

 

 



Supplementary Figure 1:  Schematic illustration of the relative power feature of the 
accelerometer. Upper panel: PPG signal, middle panel: three axes of the accelerometer, lower 
panel: visualization of the relative power feature. Frequency content of both signals is obtained 
using Welch’s method. Thereafter, the dominant frequency (green dot) and first harmonic (green 
star) of the PPG signal are detected. Around both frequencies (±0.05 Hz) we calculate band powers 
(blue areas) using trapezoidal rule and calculate the relative power compared to the total power 
(grey area). In this example the feature value is 0.115. 

1.2.2 Threshold Selection 

The threshold for classifying a window as an artifact was determined through empirical analysis of 

the annotation data set. The steps involved were: 

1. Training Dataset Analysis: We analyzed the same data set as was used for developing the LR 

classifier to assess PPG morphology. We used every 6s segment which was classified as high-

quality PPG based on this classifier for all 20 subjects in the first study weeks. This resulted in 

5.2 million segments.   

2. Relative Power Distribution: We calculated the relative power for all segments in the 

training dataset and examined the total distribution of relative power values 

(Supplementary Figure 2).  

3. Threshold Determination: We set a threshold of 0.10 for the relative power. This threshold 

was chosen based on total distribution as shown in Supplementary Figure 2. While the 

overall distribution resembles an exponential decay, we observed a deviation from this trend 

around 0.10, where the feature values occur more frequently than expected. This suggests 

that values above this threshold may represent a qualitatively different subset of data, 

making 0.10 a reasonable and data-driven cut-off.  



 

Supplementary Figure 2:  The left panel shows the overall distribution of the relative power 
values, following an exponential decay. The right panel provided a zoomed-in view showing a 
notable deviation from the exponential decay trend around the feature value of 0.10. Based on 
this deviation, a threshold of 0.10 was established for classifying artifacts.   

1.3 Signal quality classification 

The LR classifier produced posterior probabilities, where higher probabilities indicated a higher 

likelihood of the PPG signal being of high quality, characterized by clear pulse waves with discernible 

peaks. For each 1-second window, the mean posterior probability was calculated, and a window was 

classified as high-quality if its mean probability exceeded 0.5. Accelerometer-derived binary labels 

were used to refine the classification by detecting periodic motion artifacts. A label of 0 indicated 

substantial motion artifact (above the threshold). If the majority of accelerometer labels in a 1-

second window were 0, the overall signal quality label was set to 0, overriding the PPG morphology 

classification. For each 1-sec window, the mean posterior probability was calculated. A window was 

classified as high-quality if its mean posterior probability exceeded 0.5. The accelerometer-derived 

labels binary were used to refine the signal quality classification by detecting periodic motion 

artifacts. A label of 0 indicated substantial motion artifact (exceeding the threshold). If the majority-

voted accelerometer label for a 1-sec window was equal to 0, the overall signal quality label was set 

to 0, overriding the PPG morphology classification. 



1.4 Validation of Pulse Rate Estimation 
To evaluate the most accurate approach for heart rate estimation from photoplethysmography 

signals, we compared six different methods, including four time-frequency analysis techniques and 

two beat-detection algorithms. While beat-detection methods directly identify individual pulses, 

time-frequency methods offer a continuous representation, which can be more beneficial In cases of 

noisy signals. To ensure reliable comparisons, we applied the signal quality algorithm to extract high-

quality PPG segments of at least 30s from an external dataset, containing synchronized PPG and ECG 

recordings during free-living activities. Pulse rate was then estimated on these segments for every 2s, 

using each of the six methods. By comparing both approaches, we aimed to assess their strengths 

and determine which method provides the most reliable estimates under ambulatory conditions. 

1.4.1 Validation dataset 
The performance of each method was assessed using the PPG DaLiA dataset4

, which contains 

synchronized PPG and electrocardiogram (ECG) recordings from subjects engaged in daily activities. 

ECG-derived heart rate of every 2s (8s windows, 6s overlap) served as the reference standard.  

1.4.2 Time frequency methods 
Time-frequency distributions (TFDs) provide a representation of the PPG signal’s spectral content 

over time, allowing for pulse rate estimation by identifying the dominant frequency component in 

the expected physiologically heart rate range (40-180 bpm). The following four TFD methods were 

considered and implemented in MATLAB: 

Short-Time Fourier Transform (STFT): The STFT partitions the signal into windows and applies the 

Fourier transform to each segment5
. This approach provides a straightforward way to analyze 

frequency variations. However, its resolution is limited by the fixed window length, leading to trade-

offs between time and frequency precision. A shorter window improves the temporal resolution but 

reduces frequency precision while a longer window has the opposite effect6. To match the ECG 

labels, we used 8s windows with 6s overlap. 

Continuous Wavelet Transform (CWT): The CWT decomposes the signal into wavelet coefficients 

across multiple scales, capturing both transient and oscillatory components5
. This multi-scale 



approach provides adaptability to pulse rate variations, but its resolution depends on the choice of 

wavelet function and may be affected by noise in non-stationary signals. For this specific analysis, the 

Generalized Morse Wavelet was implemented using the in-build cwt function. 

Wigner-Ville Distribution (WVD): The WVD provides a high-resolution time-frequency 

representation by computing the time-dependent spectral energy of the signal. This method offers 

precise frequency localization but is highly susceptible to cross-term interference when multiple 

frequency components are present.5  

Smoothed Pseudo Wigner-Ville Distribution (SPWVD): The SPWVD is a modification of the WVD 

that incorporates time and frequency smoothing to mitigate the presence of cross-terms, which can 

obscure the true spectral content of the PPG signal.5 The smoothing functions improve robustness 

against noise, making it particularly effective in tracking pulse rate variations during noisier 

segments. Compared to standard WVD, SPWVD tries to maintain a  high-frequency resolution 

without suffering from cross-terms. For the WVD and SPWVD, a fast and memory-efficient 

implementation of both algorithms was used.7 The SPWVD was smoothed using 1s hamming window 

in the time domain and a 8s hamming window in the frequency domain, determined empirically.  

 

1.4.3 Beat-detection algorithms 
In addition to time-frequency distribution methods, we also evaluated two robust beat-detection 

algorithms8, which aim to identify individual heartbeats from PPG signals and derive 2s pulse rate 

estimates based on inter-beat-intervals. To do this, we detected peaks within 8s windows with a 6s 

overlap. The two algorithms were:  

Multi-Scale Peak and Trough Detection (MSPTD): This method detects peaks and onsets at multiple 

scales in the PPG signal to enhance robustness against noise and artifacts.  

Adapted onset detector (qPPG): This method detects heartbeats by analyzing the steepest upward 

slopes in the PPG signal. It uses a slope function over a short window and applies an adaptive 

threshold to identify heartbeats. 



1.4.4 Evaluation  metrics 
Accuracy of the different methods was assessed using the following metrics: 

- Mean absolute error: The mean of the absolute differences between the 2s pulse rate 

estimates  from PPG and the reference ECG label. This provides a general indication of 

accuracy. 

- Median absolute error: The median of the absolute differences between the 2s pulse rate 

estimates from PPG and the reference ECG label. This provides an indication of accuracy 

without influence of outliers. 

- Percentage of windows absolute error <2 BPMs: To evaluate the proportion of highly 

accurate estimates, reflecting reliability in estimating the correct heart rate. 

- Percentage of windows absolute error > 5 BPM: To assess the frequency of large errors, 

indicating robustness against significant inaccuracies in heart rate estimations. 

1.4.5 Results 
Supplementary Table 3: Evaluation metrics of the validation for six different methods to perform 

heart rate estimation on PPG signals. CWT = Continuous Wavelet Transform, MSPTD = Multi-Scale 

Peak and Trough Detection, qPPG = Adapted Onset Detector, SPWVD = Smoothed-Pseudo Wigner-

Ville Distribution, STFT = Short-Time Fourier Transform, WVD = Wigner-Ville Distribution. 

 Time frequency analyses Beat detectors 

Method STFT CWT WVD SPWVD qPPG MSPTD 

Mean absolute error (SD) 1.34  
(2.30) 

1.12  
(2.03) 

1.34 
(2.48) 

0.87  
(2.11) 

1.98 
(4.31) 

1.38  
(2.22) 

Median absolute error (IQR) 0.80  
(0.37 – 

1.60) 

0.75  
(0.35 – 

1.33) 

0.67  
(0.30 – 

1.36) 

0.44  
(0.20 – 

0.89) 

0.93  
(0.41 – 

1.86) 

0.90  
(0.40 – 

1.71) 

% absolute error < 2 82.0 88.4 84.3 92.5 77.1 79.9 

% absolute error > 5 3.0 1.1 4.8 1.1 5.5 2.4 

 

1.4.6 Conclusion 
The results suggest that time-frequency approaches are more reliable than the evaluated beat 

detection algorithms for heart rate estimation from PPG. Among these methods, the SPWVD 



provided the most accurate pulse rate estimates, with the lowest overall error metrics and the 

highest proportion of accurate estimates. This highlights SPWVD as the most robust choice for 

analysis. 

1.4.7 Example of SPWVD 

 

Supplementary Figure 3:  Example of the smoothed pseudo Wigner-Ville distribution (SWPVD) 
applied to a the PPG signal segment. The upper panel shows the preprocessed PPG segment, while 
the lower panel displays its SPWVD. The red line indicates the dominant frequency at each time 
point. Pulse rate was estimated for every two-second window by averaging the dominant 
frequencies within that window. 

 



1.5 Directed acyclic graph pulse rate analyses 

 

Supplementary Figure 4:  Directed Acyclic Graph illustrating the known relationships between 
covariates and pulse rate parameters and autonomic dysfunction. Arrows indicate the direction of 
influence. Age, sex, physical activity and medication (specifically beta-blockers) are included as 
covariates in this study model to adjust for their potential confounding effects. 



2 Supplementary Results 

2.1 Data quality week 1 

 

Supplementary Figure 5:  Proportion of high-quality PPG data across the circadian cycle in the 
second study week. Data are represented as medians + IQR. 

2.2 Influence of periodic artifact removal (step 2) 

Supplementary Figure 6:  Removal of the proportion of high-quality PPG data after applying 
periodic artifact removal (step 2) compared to only step 1 across the circadian cycle in the first 
study week. Data are represented as medians + IQR. 

 



2.3 Impact of dyskinesia on signal quality 
Supplementary Table 3: Data quality across different tertiles of different rest tremor severities. 
Data are presented as median + IQR.  

 

Supplementary Table 4: Data quality across tertiles with different dyskinesia severities. Data are 
presented as median + IQR. 

 

No tremor 
(n=293) 

Mild tremor  
(n=101) 

Severe tremor 
(n=50) 

All  
(n=444) 

Week 0     

Data quality day (%) 
28.95 
[24.33, 36.29] 

29.68 
[23.98, 35.67] 

30.72  
[22.36, 35.86] 

29.17 
[24.01, 35.90] 

Data quality night (%) 
85.90  
[79.24, 90.57] 

86.73  
[78.68, 90.46] 

85.38  
[79.73, 90.74] 

86.08  
[79.30, 90.57] 

Step 1 removal: Atypical 
morphology (PPG) (%) 

70.78 
[63.48, 75.39] 

70.28  
[64.23, 75.99] 

69.18  
[64.07, 77.59] 

70.58  
[63.97, 75.88] 

Step 2 removal: Periodic 
movement (accelerometer) (%) 

0.11  
[0.04, 0.24] 

0.08  
[0.02, 0.23] 

0.08  
[0.03, 0.20] 

0.10  
[0.03, 0.22] 

Week 1     

Data quality day (%) 
29.48 
[24.38, 36.50] 

28.97 
[24.66, 34.86] 

27.34  
[19.94, 37.12] 

29.01 
[23.82, 36.19] 

Data quality night (%) 
86.37 
[79.39, 90.70] 

87.66 
[79.19, 91.47] 

85.16 
[80.65, 91.40] 

86.34 
[79.37, 91.03] 

Step 1 removal: Atypical 
morphology (PPG) (%) 

70.48 
[63.20, 75.41] 

71.01 
[65.12, 75.24] 

72.24 
[62.19, 79.84] 

70.76 
[63.46, 75.89] 

Step 2 removal: Periodic 
movement (accelerometer) (%) 

0.12 
[0.04, 0.29] 

0.08 
[0.02, 0.22] 

0.09 
[0.03, 0.26] 

0.11 
[0.03, 0.28]  

 
No dyskinesia 
(n = 367) 

Mild dyskinesia 
(n = 35) 

Severe dyskinesia 
(n = 41) 

All 
(n=444) 

Week 0 
    

Data quality day (%) 29.27 
[24.03, 35.91] 

30.18 
[25.64, 37.20] 

28.36 
[21.39, 34.83] 

29.17 
[24.01, 35.90] 

Data quality night (%) 86.16 
[79.15, 90.54] 

84.56 
[82.11, 89.61] 

85.92 
[78.52, 91.07] 

86.08  
[79.30, 90.57] 

Step 1 removal: Atypical 
morphology (PPG) (%) 

70.42 
[64.01, 75.81] 

69.79 
[62.48, 74.29] 

71.43 
[64.50, 78.45]   

70.58  
[63.97, 75.88] 

Step 2 removal: Periodic 
movement (accelerometer) (%) 

0.10 
[0.03, 0.23] 

0.11 
[0.03, 0.24]  

0.10 
[0.03, 0.20] 

0.10  
[0.03, 0.22] 

Week 1 
   

 
Data quality day (%) 29.16 

[24.38, 36.39] 
28.69 
[24.51, 35.58] 

28.52 
[22.32, 34.45] 

29.01 
[23.82, 36.19] 

Data quality night (%) 86.41 
[79.24, 91.17] 

86.05 
[80.09, 89.78]  

87.39 
[82.73, 90.98] 

86.34 
[79.37, 91.03] 

Step 1 removal: Atypical 
morphology (PPG) (%) 

70.51 
[63.31, 75.46] 

71.29 
[64.29, 75.41] 

70.98 
[65.42, 77.58] 

70.76 
[63.46, 75.89] 

Step 2 removal: Periodic 
movement (accelerometer) (%) 

0.12 
[0.03, 0.29] 

0.08 
[0.04, 0.13] 

0.10 
[0.03, 0.18] 

0.11 
[0.03, 0.28]  



2.4 Influence of periodic artifact removal (step 2) on pulse rate estimates 

 

Supplementary Figure 7: Removed pulse rate estimates by applying step 2 of the signal quality 

algorithm, for the different dyskinesia tertiles. The data are represented as the mean absolute 

removal per subject per pulse rate value. There is no association between removed pulse rate 

estimates and dyskinesia severity. 

  



2.5 Pulse rate parameters - descriptives 

 

Supplementary Figure 8: Distributions of the three different pulse parameters in the first study 
week across the study population. 

 

 

Supplementary Figure 9: Bland-Altman plots of the pulse rate parameters in the first two study 

weeks with the intraclass correlation coefficient.  

  



2.6 Influence of periodic artifact removal (step 2) on pulse rate parameters 

 

Supplementary Figure 10: Violins of the maximum pulse rate in relation to dyskinesia severity 

(MDS-UPDRS 4.1 + 4.2) in the first study week.  The different colors represent the maximum pulse 

rate when assessing solely PPG morphology (blue) or also incorporating periodic artifact removal 

using the accelerometer (red). Filtering for periodic motion artifacts does not significantly affect 

the aggregated maximum pulse rate at the group level, but does influence estimates at the 

individual level in any dyskinesia group. 

 

Supplementary Figure 11: Violins of the resting pulse rate during the night in relation to tremor 

severity (MDS-UPDRS 3.17) in the first study week.  The different colors represent the resting pulse 

rate when assessing solely PPG morphology (blue) or also incorporating periodic artifact removal 

using the accelerometer (red). Filtering for periodic motion artifacts does not affect the aggregated 

resting pulse rate in any tremor group. 



Supplementary Figure 12: Violins of the resting pulse rate during the day in relation to tremor 

severity (MDS-UPDRS 3.17) in the first study week.  The different colors represent the resting pulse 

rate when assessing solely PPG morphology (blue) or also incorporating periodic artifact removal 

using the accelerometer (red). Filtering for periodic motion artifacts does not affect the aggregated 

resting pulse rate in any tremor group.  

 

 

Supplementary Figure 13: Violins of the resting pulse rate during the night in relation to dyskinesia 

severity (MDS-UPDRS 4.1 + 4.2) in the first study week.  The different colors represent the resting 

pulse rate when assessing solely PPG morphology (blue) or also incorporating periodic artifact 

removal using the accelerometer (red). Filtering for periodic motion artifacts does not significantly 

affect the resting pulse rate in any dyskinesia group. 

 



 

Supplementary Figure 14: Violins of the resting pulse rate during the day in relation to dyskinesia 

severity (MDS-UPDRS 4.1 + 4.2) in the first study week.  The different colors represent the resting 

pulse rate when assessing solely PPG morphology (blue) or also incorporating periodic artifact 

removal using the accelerometer (red). Filtering for periodic motion artifacts does not significantly 

affect the resting pulse rate in any dyskinesia group. 

 

2.7 Regression results  
 

 

Supplementary Figure 15. Multivariate regressions between the pulse rate parameters in the 

second study week and SCOPA-AUT. Every data point is corrected using the following covariates: 

age, sex, use of betablockers and baseline physical activity. SCOPA-AUT = SCales for Outcomes in 

PArkinson’s disease - Autonomic dysfunction. 
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