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Probabilistic Modelling of Gait for Robust
Passive Monitoring in Daily Life
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Abstract—Passive monitoring in daily life may provide
valuable insights into a person’s health throughout the
day. Wearable sensor devices play a key role in enabling
such monitoring in a non-obtrusive fashion. However, sen-
sor data collected in daily life reflect multiple health and
behavior-related factors together. This creates the need for
a structured principled analysis to produce reliable and
interpretable predictions that can be used to support clin-
ical diagnosis and treatment. In this work we develop a
principled modelling approach for free-living gait (walking)
analysis. Gait is a promising target for non-obtrusive mon-
itoring because it is common and indicative of many differ-
ent movement disorders such as Parkinson’s disease (PD),
yet its analysis has largely been limited to experimentally
controlled lab settings. To locate and characterize station-
ary gait segments in free-living using accelerometers, we
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present an unsupervised probabilistic framework designed
to segment signals into differing gait and non-gait patterns.
We evaluate the approach using a new video-referenced
dataset including 25 PD patients with motor fluctuations
and 25 age-matched controls, performing unscripted daily
living activities in and around their own houses. Using this
dataset, we demonstrate the framework’s ability to detect
gait and predict medication induced fluctuations in PD pa-
tients based on free-living gait. We show that our approach
is robust to varying sensor locations, including the wrist,
ankle, trouser pocket and lower back.

Index Terms—Gait modelling, health monitoring, passive
monitoring, gait detection, wearable sensing.

I. INTRODUCTION

UBIQUITOUS consumer devices such as smartphones and
wearables are equipped with low power inertial sensors

such as accelerometers and gyroscopes capable of continuously
recording their wearer’s movements. In controlled laboratory
settings, such sensors have been used successfully to measure
symptoms of patients with various movement disorders, such
as Parkinson’s disease (PD) [1]. However, these measurements
only provide a snapshot of the patient’s condition, and may not be
representative of the symptoms experienced in daily living con-
ditions outside the lab, for example because of observer effects
[2]. Unobtrusive wearable sensors enable us to monitor patients
in daily life, which may provide patients, care providers and
researchers with useful insights into the course of symptoms [3].

However, obtaining reliable and interpretable measurements
in uncontrolled environments is difficult. One strategy has been
to record the patient’s ability to perform specific tasks (e.g. walk
10 meters) at different times of the day (active tests) [4]. An
important limitation of active tests is that patients are interrupted
in their daily activities during the tests, which can lead to
high attrition in compliance [5]. Additionally, it is practically
impossible to obtain a continuous view of symptom fluctuations
using short active tests.

Instead of instructing patients to perform specific tasks, we
could use daily routine activities that are affected by the pa-
tient’s condition to measure how someone’s symptoms fluctu-
ate throughout the day (i.e passive monitoring). An important
example of such activity is walking, otherwise known as gait.
Many movement disorders are associated with alterations in gait
patterns, and neurologists often use in-clinic gait examination
to establish a diagnosis. PD-related changes in gait patterns
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consist of continuous impairments involving slowness and re-
duced arm swing (bradykinetic gait) and episodic hesitations
to produce effective steps (freezing of gait). In many patients,
bradykinetic gait is already present early in the disease [6] and
is responsive to symptomatic medication (e.g. levodopa) [7].
Therefore, measuring free-living gait could serve as a marker for
disease progression and therapy-related symptom fluctuations
in PD patients. This would allow for unobtrusive remote patient
monitoring, and can potentially facilitate titration of medication,
early diagnosis and evaluation of new drugs [8].

In order to extract reliable information about a patient’s
free-living gait, we need a principled framework to locate and
summarize gait segments. Important challenges are:

� The scarcity of suitable reference datasets: most available
methods are trained and evaluated using labelled data
from a pre-defined, and sufficiently distinguishable set of
scripted activities, often collected in controlled environ-
ments. This does not reflect free-living conditions, where
much more variation is present due to environmental and
behavioural factors. This means that we need labelled
training data that better reflects real-life variation.

� On the other hand, we need to acknowledge that it re-
mains infeasible to capture all real-life variation in training
datasets. Highly flexible, supervised systems can have
unpredictable behavior as data shifts outside the train-
ing distribution. Therefore, the free-living setting asks
for principled, interpretable models which can produce
parsimonious signal representations, while accounting for
distributional changes and uncertainty in our data.

In this work, we propose a unified framework for gait detec-
tion and gait pattern analysis. We have combined common char-
acteristics used for gait analysis into a principled probabilistic
graphical model, which can be directly applied to the accelerom-
eter data. We adopt a flexible nonparametric model which can
locate different gait and non-gait activities that vary both in terms
of their statistical and temporal characteristics. Specifically, we
use a set of high order autoregressive (AR) processes. The
AR process is a parametric model of the frequency spectrum,
hence it directly captures characteristics derived from the power
spectral density of the data. At the same time, AR processes
are time domain models which allows us to couple them with
a nonparametric hidden Markov model (HMM) leading to an
AR-iHMM also known as a nonparametric switching AR process
[9] to capture changes in behavior patterns and gait types in
free-living conditions.

To demonstrate the applicability of this analytical framework,
we used a new, unique dataset consisting of sensor data from
various wearables and concurrent reference video annotations,
collected during unscripted daily living activities in and around
the homes of 25 PD patients with motor fluctuations, and 25 age-
matched controls. Using this dataset, we show that the proposed
AR-iHMM can be used in free-living conditions to accurately
detect healthy and pathological gait across different sensor wear
locations. Furthermore, we show that the model can identify
changes in gait pattern after intake of dopaminergic medication
in individuals with PD.

II. RELATED WORK

In the last two decades, advances in wearable sensors have
made it feasible to unobtrusively monitor patients outside con-
trolled laboratory conditions, allowing us to study real-life gait
patterns. However, to successfully deliver on that promise, we
need tools which can reliably and robustly model data recorded
from wearables in this setting. Here we review relevant prior
work in terms of wearable sensor devices, gait detection algo-
rithms, and gait characteristics under study.

A. Wearable Sensor Devices

Because of its simplicity, robustness and affordability, the
3-axis accelerometer is by far the most widely used sensor for
free-living gait analysis. The accelerometer sensor measures the
vector sum of all sources of acceleration acting on the device in
each spatial direction. The unit of measurement is m/s2 and if
the device is not under other sources of acceleration, the only
acceleration measured by the device is due to the force of gravity
(zero magnitude under free-fall).

Sensor devices can be worn on various body locations, in-
cluding the trouser pocket, the lower back, the shin or ankle,
the shoe, as well as the wrist. The choice of device location is
influenced by the expected gait detection accuracy, the type of
gait characteristics that can be reliably estimated, patient accep-
tance, and the commercial availability of devices. An extensive
review of widely-used wearable devices and their sensors for
gait analysis can be found in Tao et al. [10], and a focused
review on sensor placement for monitoring of PD can be found
in Brognara et al. [11].

There is no consensus on the best device location to detect
and characterize the gait of PD patients, and whether there is
added value in combining multiple locations. Therefore, we
evaluate our proposed framework on various commonly used
sensor locations. Another concern can be the limited commercial
availability and high costs of “research-grade” devices. For this
reason, we include a consumer smartphone in our comparison,
which is widely available and relatively low-cost.

B. Gait Detection Algorithms

Most gait detection techniques rely on parametric assump-
tions about the spectral density, time domain distribution or both
[12]. Typically, features are extracted from windows of fixed
width, and the decision to classify a window as gait or non-gait
behavior is made using pre-defined thresholds or using a trained
classifier.

Various features have been been used for gait detection. One
of the most widely used methods for identifying gait is based
on the standard deviation (STD) of a windowed accelerometer
signal [13]. An alternative, and similarly popular approach is the
window-based analysis of spectral features [10]. Gait is typically
highly periodic with Nyquist bandwidth of 10–15 Hz [14].
This has motivated the use of the short-time Fourier transform
(STFT) to detect gait. For example, Sama et al. [15] studied
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the energy of the accelerometer signal in 800 different fre-
quency bands. They applied Relief feature selection to identify
the energy bands that are most descriptive of gait. Karantonis
et al. [16] suggested directly analyzing the Fourier coefficients of
the z-axis on the accelerometer to look for sufficient power at the
expected range of walking frequencies (0.7–3.0 Hz). The time-
frequency resolution issues of STFT-based walking detection
have sometimes been addressed using wavelet transforms. Con-
tinuous wavelet transforms often require large computational
effort, but discrete wavelet transforms can be used to efficiently
estimate high quality features of gait [17], more efficiently even
compared to Fourier transform [18, page 254]. We can also
encode the power spectrum directly in the time domain if we
use windowed auto-correlation [19] and then use the values at
a subset of time lags corresponding to the duration of the gait
cycle [20]. Alternatively, a stride template can be formed offline
and online similarity to the template be determined (e.g. via
cross-correlation [21] or dynamic time warping [22]).

A problem with these different window-based feature extrac-
tion methods is that signals acquired in daily life are highly
non-stationary. When these non-stationarities occur within a
window, for example, the transition from standing to gait, they
may reduce the usefulness of the extracted features, particularly
in the case of STFT (as we will further discuss in Section IV).

Gait detection systems not only vary in the features they rely
on, but also in the classification algorithm they use. Support
vector machines and random forest classifiers are commonly
trained on window-based features [23], [24]. In addition, HMMs
have also been used to detect gait based on window-based fea-
tures, which offers the advantage of incorporating the sequential
nature of human behavior [25]. Haji et al. [25] demonstrated that,
in more challenging settings, a hierarchical HMM significantly
improves gait detection compared to, for example, peak detec-
tion and dynamic time warping. More recently, generic activity
recognition pipelines based on deep learning methods [26], [27]
are being introduced, although the scarcity of labelled free-living
data currently limits their practical use.

Despite the heterogeneity in gait patterns, gait detection is
generally treated as a binary classification problem (gait/non-
gait). Whereas this may be appropriate to globally describe
how much users walk, problems can emerge when it is used
as a starting point for evaluating the quality of gait in medical
applications; these systems group all gait together, regardless of
changes in the gait pattern that can occur even within the same
gait segment (e.g. because of changes in symptoms, pace or
environment). As a result, the detected gait segments are likely
heterogeneous and non-stationary, which can be problematic for
subsequent gait pattern analysis (as we will further discuss in
Section IV).

C. Characterization of the Gait Pattern

Once gait episodes have been identified, studies have used
various approaches to characterize the gait pattern in movement
disorders such as PD. Many studies try to identify important
events of the gait cycle, including the heel strike or initial contact
(IC), and final contact (FC) of both feet. Several variations to
peak detection have been used for this, which may benefit from

pre-processing the acceleration signal using continuous wavelet
transforms (CWT) [28]. The timing of IC and FC events is
then used to compute temporal gait features such as step time,
swing time, stance time, and double support time. Additionally,
based on assumptions about the exact sensor positioning and the
biomechanics of gait, location-specific algorithms can be used
to estimate spatial gait features. For example, having identified
the ICs and FCs, one can use the inverted pendulum model to
estimate the step length from the accelerometer signal of a sensor
on the lower back [29]. Del Din et al. [30] used this approach
and showed that free-living gait analysis discriminated better
between PD patients and healthy controls than lab-based gait
analysis, which illustrates the potential of free-living gait anal-
ysis. Moore et al. [31] suggested that the step length estimated
using an ankle sensor could be used to track the free-living
gait pattern of PD patients, but only included three PD patients
monitored over 24 hours in an apartment-like setting.

Other approaches focus on analyzing the periodicity of the ac-
celerometer signal during gait, either based on the PSD or auto-
correlation in the time domain. An advantage of these methods
is that they are less dependent on location-specific assumptions,
compared to identifying gait cycle events and computing the
step length. For example, Weiss et al. [32] computed the width
of the dominant frequency in the PSD during free-living gait
(based on the accelerometer signal from a lower back sensor),
and demonstrated that it could be used to predict future falls
in patients with PD. Similarly, Rispens et al. [33] computed the
PSD during free-living gait based on a lower back accelerometer,
and showed that the spectral power in the lower frequencies,
and the amplitude and slope of the dominant frequency, were
related to the number of falls in older adults. Pérez-López
et al. [34] combined the identification of ICs with analysis of
the PSD during individual strides, and showed that the power in
the gait range (based on a waist accelerometer) was correlated
to changes after medication intake in PD patients. Bellanca et
al. [35] suggested that the harmonic ratio (ratio of the sum of the
amplitudes of the even and uneven harmonics, computing over
the PSD of a single stride) could be used as a measure of step
symmetry. Alternatively, the periodicity of free-living gait can
also be analyzed in the time domain, for example by estimating
the auto-correlation [36].

All analyses mentioned in this paragraph strongly depend on
accurate localization of stationary gait segments, which may be
sub-optimal given current gait detection algorithms. In this work,
we propose that free-living gait analysis can be improved by
employing a unified approach to gait detection and gait pattern
characterization.

III. FREE-LIVING DATA COLLECTION

To allow for a more realistic understanding of the challenges
of modelling free-living gait data, and to evaluate our proposed
model, we have used a new reference dataset from the Parkin-
son@Home validation study [37]. This study includes sensor
data and video recordings during uninterrupted and unscripted
daily life activities in the participants’ natural environment.
For a detailed description of the study design and participants,
we refer to Evers et al. [37]. The de-identified dataset will
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be made available to the scientific community in collaboration
with the Michael J Fox Foundation. In brief, both patients with
Parkinson’ s disease with motor fluctuations (PD group) and
25 age-matched participants without PD (non-PD group) were
recruited. Inclusion criteria for both groups consisted of: (1) age
30 years or older and (2) in possession of a smartphone running
on Android OS version 4.4 or higher. Additional inclusion
criteria for participants in the PD group were: (1) diagnosed with
PD by a neurologist, (2) receiving treatment with dopaminergic
medication (levodopa and/or dopamine agonist), (3) experienc-
ing motor fluctuations (MDS-UPDRS item 4.3 ≥ 1), and (4)
known to have PD-related gait abnormalities, i.e. bradykinetic
and/or freezing of gait (MDS-UPDRS item 2.12 ≥ 1 and/or
item 2.13 ≥ 1). PD patients who received advanced treatment
(deep brain stimulation and/or intestinal infusion of levodopa or
apomorphine) were excluded.

Participants were visited in their own homes and each visit
included a standardized clinical assessment (full MDS-UPDRS
[38] and AIMS [39]) and an unscripted free-living assessment of
at least one hour. To ensure indicative behaviors such as longer
gait episodes were captured, assessors encouraged participants
to include these in their routines. Participants in the PD group
were asked to skip their morning dose of dopaminergic medi-
cation before the visit, so that they were in the OFF medication
state at the start of the visit. After the MDS-UPDRS part III
(motor examination) and free-living assessment were conducted
in the OFF state, participants took their usual medication and
the full MDS-UPDRS, AIMS and free-living assessment were
performed in the ON state, i.e. with the symptomatic effects of
medication present.

During the full visit, participants wore various light-weight
sensors on different body locations. In this study, we used
the accelerometer data from the smartphone worn in the front
trouser hip pocket (collected using the HopkinsPD app [40];
all participants were instructed to wear trousers with a front
pocket), and the accelerometer data from Physilog 4 devices
worn on both ankles, both wrists and the lower back. To allow
for time synchronization, all devices were triggered together
(hit ten times against a table) in front of the video camera at the
beginning and end of data collection.

The video recordings during the free-living assessments were
annotated by a research assistant, who labeled as “gait” any
activity that involved at least 5 consecutive steps, with the
exception of any running episodes.

IV. CHALLENGES OF MODELLING FREE-LIVING GAIT

Analysis of free-living gait is challenging because accelerom-
eter data simultaneously reflects disease symptoms, behaviour,
device orientation, sensor location and environment. This makes
it difficult to design a reliable analytical pipeline which untangles
these factors and allows us to focus solely on representative
aspects of the gait that are relevant for monitoring PD. Before
we introduce our proposed model, we first highlight some of
the common estimation challenges which we aim to address.
We use examples from the unscripted free-living assessments of
the Parkinson@Home validation study.

A. Data Filtering and Accounting for Orientation

Accelerometers measure any forces due to accelerations
which partly prevent the device from free-fall in the Earth’s
gravitational field. If we are interested in monitoring gait, how-
ever, we first need to remove this field effect from the raw
accelerometer data, as irrelevant device rotations (e.g. slight
variations in the attachment of the sensor) may otherwise con-
found any inferences we make about a person’s gait. This
analytical step is most commonly done using fusion of data from
a magnetometer, gyroscope and accelerometer [41], or simply
using a digital low pass filter [42] applied to the accelerometer
signal. Sensor fusion is well justified and commonly used for
estimation of more complex tasks such as sensor positioning and
heading, where it outperforms techniques relying on numerical
integration of gyroscopes [43]. However, due to the inherent
smoothness assumption in the Kalman filter typically used for
the fusion, estimates might be biased during abrupt changes [43].
Different methods of sensor fusion, such as one that relies on
l1-regularization, can address this problem, but in this work we
opt for using a single sensor approach. Low pass filters can be
used in an accelerometer only setup, but they are poorly justified,
since orientation changes can have a broad bandwidth leading
to unwanted distortions in the time domain depending on the cut
off frequency of the filter. In this work we opt for a piecewise
l1- trend filter as motivated in Badawy et al. [44] which assumes
that changes due to orientation are piecewise linear [45].

The accelerometer data we use in any subsequent analysis,
is pre-processed by interpolating to a uniform sample rate1

(i.e. using cubic spline interpolation), applying the l1- trend
filter to each individual axis and computing the magnitude of

acceleration according to
√

a2x + a2y + a2z .

B. Parsimonious Representation of Gait Data

We have seen in Section II that most pipelines for analysis
of gait data involve windowing of sensor data and estimation
of statistical or spectral features. The estimated feature values
are then used to make inferences about the behaviour monitored
at that point in time (i.e. gait vs non-gait) or the gait pattern.
However, in free-living the variability of these features is large.
For example, in Fig. 1 we show how much the window standard
deviation differs for both gait and non-gait classes, even within
a single individual. To reduce some of this variability, we tend
to aggregate feature values (i.e. across time, across individuals,
across similar behaviours). The way we make such aggregation
will inevitably affect the quality of the inferences we make.

Let us consider the following example: we have 10 minutes
of consecutive gait data from a PD patient where the gait varies
significantly across different segments. In Fig. 2 we plot how
much the 1 second window standard deviation varies in time
and how this feature variation can be reduced by smoothing
through time. The underlying assumption, which is commonly

1Smartphone data is sampled at non-uniform rate of 50–150 Hz. The wrist-
worn, shin-worn and lower back Physilog devices output uniformly sampled
data at rate of 200 Hz. All accelerometer data is processed in meter per second
squared.
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Fig. 1. Histograms of 1 second window standard deviation of the mag-
nitude of acceleration from different PD patients during the unscripted
free-living assessment, collected using a smartphone placed in the front
trouser pocket (top row) and a wrist-worn device (bottom row). The hor-
izontal axes show the window standard deviation, and the vertical axes
show the normalized bin counts. Blue: gait, orange: non-gait (according
to video annotations).

Fig. 2. Illustrative example of feature smoothing over accelerometer
data during unscripted gait. The top panel displays the magnitude of
10 minutes of pre-processed accelerometer data collected using a
smartphone placed in the front trouser pocket. In the second panel, we
display the fixed size (1 sec) window standard deviation. In the third
panel, we show the smoothed feature values using standard moving
average in time (5 sec). The bottom panel displays the standard de-
viation, computed over approximately stationary segments of variable
length (determined visually).

made, is that feature values collected closely in time should be
similar (i.e. change smoothly). However, behaviour can change
abruptly, hence this assumption does not hold. In contrast, we
also display the same feature, but now conditioned on stationary
segments of variable length. This results in a more compact
representation of this type of data that enables simple inference,
while still preserving the important signal characteristics.

C. Spectral Estimation Challenges

A similar argument can be made for features based on the
spectrum. The support at different frequencies also exhibits large
variation both within gait and non-gait classes, as shown in
Fig. 3. Similar to standard deviation, more stable spectral estima-
tion can be done by aggregating across neighbouring windows,
e.g. using Welch’s overlapped averaging power spectral density
(PSD) estimator [18], [46, Section 7.4]. The problem is that
this still assumes that the signal is stationary across windows,
which is often not the case in free-living data because of the
abrupt changes in behaviour. Even within one gait segment,

Fig. 3. Histograms of the spectral energy at typical gait frequencies
(0.5–10 Hz) obtained using STFT with window length 1 second. Each
subplot displays the feature distribution for the unscripted free-living
assessment of a single PD patient, from a smartphone worn in the front
trouser pocket. The horizontal axes are different total power values, and
the vertical axes show the normalized bin counts. Blue: gait, orange:
non-gait (according to video annotations).

the characteristics of the gait pattern can abruptly shift due
to intentional changes (e.g. turning, starting to make gestures),
environment (e.g. changing walking terrain), and PD symptoms
(e.g. hesitations to walk through doorways). Fig. 4 displays an
example of this. We show that the Welch PSD associated with
each of the two gait patterns, varies significantly from the Welch
PSD estimated when grouping both gait patterns together. This
underlines that if we condition on piecewise stationary segments,
we obtain more useful estimates of the spectrum.

An additional problem that arises with estimating Fourier
features in free-living is that accurate estimation of the spectrum
rests on the assumption of periodic continuation [18]. Because
of common non-stationarities in free-living (e.g. mentioned
changes within gait episodes, but also the start and end of gait
episodes), violations of this assumption are common when using
fixed size windows. This can lead to spurious spectral artifacts,
for example caused by Gibbs phenomenon [18]. Typically, these
issues are ameliorated by using other window functions than the
rectangular window, such as the Hanning window. However,
while windowing matches samples at window edges (by zero-
ing), it also distorts the waveform because it causes amplitude
modulation.

In conclusion, the usefulness of spectral estimates largely
depends upon accurately locating stationary segments in time,
i.e by accurately detecting the start and end of gait episodes,
and by detecting (abrupt) changes within gait episodes. At the
same time, doing this depends on having access to spectral
estimates. Because of this interdependence, we propose a unified
framework that addresses both these problems simultaneously.

V. PROBABILISTIC MODELLING OF GAIT

Whereas most systems focus on segmenting accelerometer
data into gait vs. non-gait classes, we first segment the data into
multiple different groups (more than two) and afterwards assign
these groups to gait or non-gait class. We do this efficiently by
designing a flexible, probabilistic model which is trained di-
rectly on the magnitude of acceleration obtained after removing
piecewise linear device orientation changes (see Section IV).

A. Autoregressive Modelling of Gait

The first assumption we make is that the repetitiveness of
the gait cycle (heel strike, midstance, heel off, midswing, heel
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Fig. 4. Illustrative example of estimating the power spectral density over an unscripted gait segment that contains switches between two different
gait patterns (i.e. is approximately piece-wise stationary). The top panel displays the signal magnitude of 20 seconds of pre-processed gait data
from a PD patient, obtained from a smartphone worn in the trouser pocket. The red and blue shading indicates different gait states. The bottom
panels display the Welch’s PSD estimates: for data from the red gait state (left); for data from the blue gait state (right); for an equal amount of data
from both (middle). To allow for same resolution in the 3 bottom plots, we have used 20 seconds of data for each plot.

strike) is one of the key properties that characterize gait episodes.
The periodic nature of the accelerometer data during gait [36]
makes it efficient to detect and model gait based on the spectrum,
for example using the Fourier transform. As discussed, Fourier
spectral analysis inherently assumes periodic continuation (see
Section IV). So we address this problem by simultaneously
estimating the spectrum and the start and end points of the
stationary gait episodes. To achieve this, we first model the
spectrum of the gait in the time domain, using autoregres-
sive (AR) processes [18]. An order r AR model is a random
process which describes a sequence {xt}Tt=1 as a linear com-
bination of previous values in the sequence and a stochastic
term:

xt =

r∑
j=1

Ajxt−j + et et ∼ N (
0, σ2

)
(1)

where A1, . . . , Ar are the AR coefficients, T denotes the length
of the sequence, and et is a zero mean random variable, assumed
to be an i.i.d. Gaussian sequence (we can trivially extend the
model such that et ∼ N (μ, σ2) for any real-valued μ). We
assume that the AR noise variance σ2 is unknown and place a
conjugate inverse-Wishart prior over it. This essentially means
that in addition to modelling the periodicity of the input signals,
we also account for changes in the non-periodic components
of the signals. We saw in Section IV that the window variance
of the acceleration can be a useful discriminator of gait versus
non-gait on its own in certain scenarios. If we assume an AR
model of order r = 0, the variance of et is the variance of the
window.

AR processes are commonly used as parametric models of
the PSD since the power spectrum is determined by the AR
parameters [18]:

S(f) =
σ2

∣∣∣1−∑r
j=1 Aj exp (−i2πfj)

∣∣∣
2 (2)

where f is the frequency variable and i denotes the imaginary
unit. This means that the number of non-zero AR coefficients

determines the complexity of the PSD which the model can
represent: there is a peak in the PSD for each complex-conjugate
pair of roots of the coefficient polynomial. Parametric spectral
estimation is often more stable than non-parametric PSD meth-
ods, and can be of high quality using fairly little data, assuming
the model is correct. The parametric model of the spectrum will
allow us to construct a flexible, non-parametric model of the
switching dynamics of different gait and non-gait activities in
free-living. More detailed discussion on the relative merits of
different spectral estimation methods combined with machine
learning, can be found in Little [18].

B. High Order Adaptive Autoregressive Processes

As mentioned above, the AR order r we use will determine
the complexity of this parametric model of the spectrum. The
optimal AR model r is likely to vary across different stationary
segments of sensor data and choosing fixed r which is too large
will lead to problems with parameter estimation (fitting the AR
coefficients). At the same time, gait is typically characterized by
a low fundamental frequency, with bandwidth of up to 10–15 Hz
(see Section II). This implies the need for fairly high order r AR
processes (together with sufficiently high sample rate) in order
to accurately capture the typical range of gait frequencies. To
address this conflict, we use a non-conjugate Bayesian prior on
the AR coefficients A1, . . . , Ar which induces sparsity of the
coefficients (only a few are non-zero at any one time). This
allows us to draw conclusions about the AR coefficients that
do not contribute to the underlying dynamics of the gait. In
effect, this means that we attempt to learn fewer than r AR
coefficients supported by the signal but potentially associated
with larger AR time delays. This is done by assuming indepen-
dent, zero-mean Gaussian priors on the coefficients A1, . . . , Ar

with unknown precisions, which acts as an automatic relevance
determination prior (ARD) [47]. The ARD prior was first
proposed in the context of neural network models in Mackay
[47] and then later adopted for switching AR processes in
Fox et al. [48].
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C. Latent Switching Behavior Dynamics

To analyze free-living data, it is insufficient to define a
parametric spectral model for the patients’ gait, because par-
ticipants regularly switch between different gait and non gait
episodes, which results in highly non-stationary time series
(see Fig. 4).

Even within gait episodes, the optimal AR parameters to
model the gait might change depending on the speed, amplitude
and other characteristics of the walking pattern. In order to group
similar gait signals, but also separate gait from non-gait data,
we use a switching AR process model (AR-HMM). However,
one drawback of conventional switching AR processes, is that it
requires a fixed number of hidden states and AR order. Since the
heterogeneity in both gait and non-gait episodes will increase as
more free-living data becomes available, we adapt the more flex-
ible non-parametric switching AR process first proposed in Fox
et al. [9]. The model can be thought of as an infinite-state
extension of the switching AR process (hence we refer to it
as AR-iHMM). Viewing the switching AR model as a hidden
Markov model (HMM) with AR processes used to model the
HMM emissions, then in the non-parametric switching AR
model the parametric HMM is effectively replaced with an
infinite HMM [49].

In the AR-iHMM model, we assume that the data is an
inhomogeneous stochastic process and that multiple AR mod-
els are required to represent the dynamic structure of the
signal, i.e.:

xt =
r∑

j=1

Azt
j xt−j + eztt eztt ∼ N (

0, σ2
zt

)
(3)

where zt ∈ {1, . . . ,K+} indicates the AR model associated
with time index t. The latent variables z1, . . . , zT describing
the switching process are modelled with a Markov chain. A
transition matrix π is estimated with K+ rows and K+ + 1
columns indicating the probability of specific transitions from
existing state i to existing state j, πij , or from existing state i
to a new state K+ + 1, πiK++1. Transitions that are observed
more often during the training of the model will have higher
probability, represented in the transition term πij .

When K+ � T , this model clusters together parts of the
signal into an, a priori, unknown number K+ of time segments
which are best represented with the same AR coefficients. In
AR-iHMM, K+ is unknown: instead of being fixed it is inferred
from the data and can adapt to new, unseen structure in the
data. The AR-iHMM is obtained by augmenting the transition
matrix of the Markov process π underlying the latent variables
z1, . . . , zT with a hierarchical Dirichlet process (HDP) [50]
prior.

VI. RESULTS: GAIT DETECTION

In order to make inferences about changes in the gait pattern,
we first need to verify that our proposed framework is able to
accurately identify gait segments. In this section, we evaluate
our ability to detect gait as annotated in the video recordings of
the Parkinson@Home validation study, using the pre-processed
accelerometer data (see Section IV) from the smartphones

and Physilog 4 devices placed on various body locations (see
Section III). To establish whether our approach achieves sat-
isfactory results, we include a comparison with some of the
most widely used gait detection algorithms. It is important to
note that our goal was not to perfectly reproduce the manual
(imperfect) video annotations, but to locate stationary gait seg-
ments in time, that can be used to make inferences about the
effect of PD on the gait pattern. For example, since our method
exploits the high periodicity of gait, we can expect that it is less
suitable to detect short, irregular gait segments. However, this is
actually a desirable property because we expect that the longer,
more “steady-state” gait segments are most useful to quantify
bradykinetic gait in PD patients.

A. Model Based Gait Detection

We infer the AR-iHMM described in Section V using scalable
iterative MAP inference proposed in Raykov et al. [51]. Any
hyperparameters associated with the AR state priors or the HDP
prior (see Section V) are fixed across patients and are selected
using standard Bayesian model selection. For each point xt, we
consider it is associated with its most likely state zt = k∗ to en-
able direct comparison, i.e. we ignore the estimated uncertainty
associated with the segmentation indicators.

To determine if the identified hidden Markov states should be
classified as gait or non-gait, we consider the AR-based PSD
estimates associated with each state. Specifically, we compute
the total energy at frequencies in the range [0.5–10 Hz], and
select a threshold of minimal spectral energy that maximizes
the balanced accuracy (average of sensitivity and specificity)
averaged across participants (measured against the manual video
annotations for the presence of gait). We evaluate the perfor-
mance of selecting the threshold using leave-one-subject-out
cross-validation. Thresholding using a shared PSD range across
participants is done only to enable a fair and intuitive comparison
with the other commonly used techniques for detection of gait
in smartphones and wearables; in principle, once the AR-iHMM
model is trained we can derive multiple features related to the
distribution of the sensor data and train a supervised classifier
on these features.

B. Implementation of Existing Gait Detection Algorithms

For the comparison with existing algorithms, we implemented
methods that rely on leveraging one or two intuitive, window-
based features from the time and frequency domain, to sepa-
rate gait from non-gait classes: STD-thresholding [12], [13];
STFT-thresholding; normalized autocorrelation step detection
and counting (NASC) [19] and continuous wavelet transform
(CWT) thresholding [52]. We evaluate the performance of the
original formulations of the algorithms, and the performance
after applying our pre-processing pipeline and adjusting thresh-
olds to maximize the balanced accuracy across participants using
leave-one-subject-out cross-validation:2

� STD-thresholding: we set a threshold based on the 1 sec-
ond window standard deviation to maximize the balanced
accuracy averaged across participants;

2Different thresholds are used for PD and controls cohorts.
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TABLE I
GAIT DETECTION PERFORMANCE OF THE PROPOSED AR-IHMM AND OF COMMON GAIT DETECTION ALGORITHMS (USING THE THRESHOLDS REPORTED IN THE

LITERATURE, AND AFTER PRE-PROCESSING AND OPTIMIZING THRESHOLDS). WE HAVE COMPUTED THE AVERAGE PERFORMANCE AND STANDARD DEVIATION
USING LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION. FOR PD PATIENTS, WE SHOW THE PERFORMANCE OF THE COMPLETE FREE-LIVING ASSESSMENTS, AND

THE DIFFERENCE IN BALANCED ACCURACY BETWEEN THE PARTS BEFORE AND AFTER MEDICATION INTAKE

TABLE II
PERFORMANCE OF DIFFERENT METHODS FOR GAIT DETECTION ACROSS DIFFERENT SENSOR LOCATIONS (AFTER PRE-PROCESSING AND OPTIMIZING

THRESHOLDS). THE PERFORMANCE IS EXPRESSED AS BALANCED ACCURACY, EVALUATED ON THE COMPLETE FREE-LIVING ASSESSMENTS OF PD PATIENTS
AGAINST VIDEO ANNOTATIONS

� STFT-thresholding: we set a threshold based on the
1 second window total energy at frequencies in the range
[0.5–10 Hz] to maximize the balanced accuracy averaged
across participants;

� NASC algorithm: the NASC involves first applying STD-
thresholding and then evaluating the auto-correlation of
the remaining data over 2 second windows, specifically
looking at the time delays representative of gait. We set a
modified STD threshold, a range of delays, and an auto-
correlation threshold to maximize the balanced accuracy
averaged across participants (iteratively, one at a time);

� CWT-thresholding: we compute the ratio between the
energy in the band of walking frequencies and the total
energy across all frequencies, and set a threshold to max-
imize the balanced accuracy averaged across participants.

Our comparison omits some previously proposed detection
algorithms because (1) they are based on heuristics which could
not be trivially adapted for detection of pathological gait; (2) they
had strong conceptual overlap with the techniques included in
the comparison; (3) they demonstrated very poor performance
on our dataset. In addition, our comparison does not include an
evaluation of deep learning activity recognition and gait recog-
nition pipelines, or deep autoencoder features which can approx-
imate arbitrarily complex mapping functions [53]. Although we
acknowledge that such methods may achieve marginally better
accuracy, we recognise that our study is based on a limited
number of participants and it is easy to overfit the free living
data. Moreover, our focus has been on deriving interpretable

representation of the data and gait clustering. Therefore, we
effectively compared linear thresholding of different properties
of the data, estimated by a window-based approach versus
estimated from the inferred model.

C. Results of Comparison

In Table I we report the different performance measures of
the tested methods when applied to the accelerometer data from
smartphones. In Table II we also report the balanced accuracy
of all algorithms on accelerometer data from different body
locations (see Section III).

First of all, the results in Table II show that it is feasible
to identify gait using our modelling approach, with at least as
good average performance compared to existing algorithms. In
addition, the results underline the importance of appropriate
pre-processing and threshold adjustment, in particular when
applying algorithms to patients with PD, as indicated by the
significant change in performance.

In most methods, we observed a difference in accuracy be-
tween PD patients and controls, and between before and after
medication intake for PD patients. The latter was most notable
in patients with a strong response to medication. This difference
in accuracy between before and after medication intake was
less prominent for the AR-iHMM, which also demonstrated less
variability in the performance across PD patients. Moreover, the
performance of the AR-iHMM was relatively robust to different
body locations of the sensor in comparison to STD-thresholding,
NASC, and CWT-thresholding (Table II).
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It is worth noting that the prevalences of the gait and non-gait
classes are not balanced in the free-living assessments from
the Parkinson@Home validation study. Across PD patients,
the mean walking time is 16% with a standard deviation of
6%. Most patients had longer walking episodes between 7 and
20 minutes before and after medication intake, combined with
many shorter walking bouts. The mean walking time is slightly
higher for non-PD controls at 21% with the same standard
deviation. Because we cannot assume that this prevalence is
representative of truly free-living situations, we choose to
evaluate the methods with measures that are independent of the
prevalence of gait (i.e. sensitivity and specificity). However,
the thresholds were set to optimize the balanced accuracy
(mean of sensitivity and specificity), which implicitly optimizes
for the situation where class prevalences are equal, and
misclassification costs are equal as well. Different applications
may require different settings of the thresholds to achieve a
different trade-off between false-positives (with the risk of using
non-gait data to predict medication induced fluctuations, which
has no basis) and false-negatives (with the risk of identifying
too few gait segments which limits our ability to track gait
fluctuations throughout the day).

VII. RESULTS: MODELLING GAIT PATTERN CHANGES

An important potential application of free-living gait analysis
in PD patients is monitoring real-life variations in the response to
medication. The non-parametric nature of our approach allows
us to identify significant statistical changes in the gait distribu-
tion which can be used to locate potential clinical changes in the
gait pattern. In this section, we report the effectiveness of our
probabilistic model for the problem of classifying gait episodes
into “before medication” and “after medication” classes. We
have compared the binary classification accuracy using different
gait features and different device locations (described in Sec-
tion III).

A. Model Based Discrimination of Gait Before/After
Medication Intake

For this classification problem, we considered the segments
that were identified as gait by our model (i.e. states with suffi-
cient power, see Section VI). The AR-iHMM segments the data
into intervals with the state variables zt denoting the AR state
representing the signal at time indexed t. If we then assume K+

unique values for zt as t = 1, . . . , T , we estimateK+ sets of AR
coefficients: {Ak

1 , . . . , A
k
r}K+

k=1. For each state k we estimate the
spectrum based on AR coefficients Ak

1 , . . . , A
k
r .

Common PSD features used to monitor PD related changes
in the gait pattern include: position of the dominant peak (i.e.
fundamental frequency); height of the dominant peak; width of
the dominant peak; ratio of the first and second peak; energy in
a specific frequency range, and others [54]. In our evaluation,
we consider the height and position of the dominant peak, and
the total energy in the range 0.5–10 Hz (gait related information
is expected in this frequency range). Because we expect that
the relative rather than the absolute within-person changes are

relevant to distinguish between before and after medication
intake, we normalized all features per patient using z-scores.

Of the 25 PD patients taking part in the study, 18 had sufficient
walking periods (at least 5 segments of 25 seconds) both before
and after medication. For these patients, we trained a logistic
classifier using each of the features described above, to predict
whether their gait segments occurred before or after medica-
tion intake. For each patient, we computed the out-of-sample
accuracy based on leave-one-subject-out cross validation.3

B. Prediction Accuracy

As displayed in Table III, we could predict with reasonable
accuracy whether a gait segment occurred before or after medi-
cation intake; note that not all patients had visible changes in
their gait pattern after medication intake, so we expect that
achieving perfect prediction accuracy will not be realistic. To
examine how our approach for gait detection affects the ability
to discriminate between before and after medication intake, we
compared accuracy between using the gait segments identified
by our model and using the gait segments as annotated on the
video recordings. For the latter, we learned the AR-iHMM on
all annotated gait data, and used all identified states to obtain the
AR-based PSD. As shown in Table III, the accuracy to predict
before/after medication intake using gait segments identified by
the model was comparable to using annotated gait segments.

C. Exploratory Gait Analysis

Because our probabilistic model is unsupervised, we can use
the model not only as a tool to make predictions, but also as an
exploratory tool to study the gait data. For example, in Fig. 5
on the left we show the gait segmentation of a PD patient with
a notable clinical improvement in gait pattern after medication
intake (based on the video annotations), where different colors
indicate different hidden states zt. What we observe is that
the probabilistic model not only allows us to identify non-gait
segments (pink and green), but also discriminates between
different variations in gait quality. In this patient, the model
separates before medication gait (red) or after medication gait
(yellow). By contrast, the right plots on Fig. 5 show segmented
gait of a PD patient whose gait does not notably improve after
medication intake (based on the video recordings). Interestingly,
we can still identify different gait segments both before and after
medication intake, but their pattern of occurrence is similar in
both conditions. Furthermore, inspection of the AR-based PSD
estimates associated with the states in both figures indicates
that the gait states on the right in Fig. 5 are more similar to
each other than the gait states associated with before and after
medication periods on the left side in Fig. 5. It should be noted
that this contrast was not present in all patients, and we show
two illustrative cases here. Further research is needed to identify
all the reasons which can affect the reported change.

3The accuracy of the leave-one-subject-out cross validation is affected both
by the flexibility of the trained classifier, but also the intrinsic variation across
features from different subjects.
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TABLE III
BALANCED ACCURACY TO PREDICT WHETHER GAIT SEGMENTS OCCURRED BEFORE OR AFTER MEDICATION INTAKE, USING A LOGISTIC CLASSIFIER BASED
ON PSD FEATURES OBTAINED FROM THE AR-IHMM, NORMALIZED PER SUBJECT. WE USE LEAVE-ONE-SUBJECT-OUT CROSS VALIDATION, AND PRESENT

THE MEAN AND STANDARD ERROR ACROSS SUBJECTS. RESULTS ARE COMPARED BETWEEN USING GAIT SEGMENTS AS ANNOTATED ON THE VIDEO
RECORDINGS (”ANNOTATED GAIT”), AND GAIT SEGMENTS IDENTIFIED BY OUR MODEL (”PREDICTED GAIT”)

Fig. 5. Segmentation of smartphone data during the free-living assessment obtained from the AR-iHMM, from two PD patients with (left) and
without (right) clinically observable changes and in the gait pattern after medication intake. Top: before medication intake. Bottom: after medication
intake. On the left the red, yellow, blue and grey segments are all associated with gait data; on the right the yellow, blue and grey segments are all
associated with gait data, with similar occurrence before and after medication intake; the remaining segments are not associated with gait.

VIII. DISCUSSION

In this report we study the problem of passively monitoring
movement disorders such as Parkinson’s disease (PD) in daily
living using wearable sensors. This is a challenging problem be-
cause of the large complexity and variation in daily living sensor
signals, in combination with the scarcity of representative free-
living datasets with reliable labels. This may explain why highly
flexible methods such as deep learning have not been successful
in the context of monitoring symptom fluctuations in PD [55].
This has stimulated the search for signal models that are based
on principled assumptions which reduce the model’s flexibility
while still allowing it to capture subtle disease-related changes.
In this work we propose a simple, structured probabilistic mod-
elling approach for the analysis of free-living gait. Our approach
is designed to simultaneously locate stationary gait segments
and characterize the gait pattern, based on pre-processed ac-
celerometer data. We achieve this by adopting a non-parametric
switching autoregressive model, circumventing the need to use
window-based analysis and the need to pre-define the number
of gait and non-gait classes that can be observed in daily life.

We demonstrate our approach on a new reference dataset
including 25 PD patients and 25 controls. The dataset is unique
because it combines unscripted daily living activities in and
around the house with detailed video annotations, which allows
us to test our model on a much more realistic setting. First, we
show that the identified classes can be used to accurately detect
gait. Second, we show that states that represent gait can be used
to predict medication induced fluctuations in PD patients.

A. Benefits of AR-iHMM Model Based Gait Analysis

In addition to the evaluated benefits of the proposed AR-
iHMM, there are some other properties which are not necessarily
reflected in the reported comparisons. Our approach has two
key advantages when it comes to estimating the spectrum of the
free-living accelerometer data (or similar sensors): (1) the time
boundaries of each segment of stationary data are adaptively
selected by the model, which avoids the need for window-based
analysis and problems associated with this; (2) in a fully prob-
abilistic fashion, we can leverage multiple repeating patterns to
get a more robust estimate of the spectrum. Additionally, our
algorithm does not treat the problem as binary classification,
but it is designed to learn multiple gait and non-gait states. This
means that it can deal with changes in gait pattern during gait
episodes. This avoids grouping different gait patterns together,
which can introduce problems in further gait pattern analyses
(see Fig. 4). Moreover, because it is unsupervised, the model
can be used as an exploratory tool to locate gait or non-gait
segments that share the same (spectral) characteristics. The user
can explicitly control the prior parameters of the model to de-
termine the temporal granularity of the segmentation and focus
on more or less detailed changes in the gait signals. This extra
control allows us to focus on sufficiently stationary (“steady
state”) gait segments that are useful to make inferences about the
gait pattern. Lastly, using this fully Bayesian model to describe
the acceleration signals allows us to estimate the uncertainty
involved with both the segmentation and the estimation of the
spectrum.
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B. Limitations and Future Directions

In order to develop an intuitive, robust and easy to interpret
probabilistic signal model for gait data in free-living, we have
made some restrictive assumptions about the distribution and
occurrence of such data in daily life. Despite the flexibility of
inferring an unknown number of different spectral AR represen-
tations, we have focused on the states that have sufficient spectral
power in the gait range to monitor changes after medication
intake. We have shown that this approach is appropriate for
monitoring the highly prevalent continuous impairments in PD
patients (bradykinetic gait). However, by focusing on short-term
interruptions of the gait, the model could potentially also be
very suitable to monitor the more rare episodic hesitations
(freezing of gait) [56], [57]. Because of the limited number of
patients that presented with this symptom during the free-living
assessments of the Parkinson@Home validation study, this re-
mains to be evaluated using other data sets. In addition, the
proposed framework does not use the axis meanings in the sensor
outputs. This was done because in smartphones, the default
orientation of the device can be different depending on the
user. Our approach can also be applied to the three-dimensional
dynamic component of the acceleration vector, or to any specific
axis.

Due to overlap in typical gait frequencies and PD resting
tremor, we can observe lower gait detection specificity mainly in
the wrist-worn devices, compared to scenarios in which we have
detected and separated PD tremor separately. Simultaneous PD
tremor and gait detection in free living will be studied in future
work.

Before the framework can used in medical contexts, fur-
ther validation is necessary. For example, in the current study
protocol the gait before medication intake was measured after
overnight withdrawal of dopaminergic medication. While this
allowed for a detailed assessment of the changes after medication
intake, in some patients the effects in daily life might be more
subtle. Future work will aim to evaluate how well response
fluctuations can be captured for naturally occurring shorter
withdrawal periods in truly unsupervised conditions.

Finally, we emphasize that the developed framework aims to
merely segment varying gait patterns in a principled and largely
unsupervised manner. In order to assign meaning to detected
changes in the gait pattern in fully unsupervised conditions, e.g.
estimate causal effects of medication, further analysis using a
carefully designed causal map is required. For example, real-life
factors such as environment (e.g. crowded city versus park,
indoors electromagnetic fields [58]) and voluntary behavior
(e.g. making gestures while walking, specifically for the trouser
pocket: type of clothing) might also influence the participants’
gait and our ability to measure it. While the current data set
includes much more environmental and behavioral variation
than lab-based studies, the activities performed before and after
medication intake were similar, which may not be the case in
fully free-living conditions. Therefore, future work will include
adjusting for potential real-life confounding, using additional
contextual sensors such as GPS.
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